/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkImageRegistrationMethodv4.h" #include "itkAffineTransform.h" #include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h" #include "itkBSplineExponentialDiffeomorphicTransform.h" #include "itkBSplineExponentialDiffeomorphicTransformParametersAdaptor.h" #include "itkComposeDisplacementFieldsImageFilter.h" #include "itkVectorMagnitudeImageFilter.h" #include "itkStatisticsImageFilter.h" #include "itkTestingMacros.h" template class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { const auto * filter = static_cast(object); if (typeid(event) != typeid(itk::IterationEvent)) { return; } unsigned int currentLevel = filter->GetCurrentLevel(); typename TFilter::ShrinkFactorsPerDimensionContainerType shrinkFactors = filter->GetShrinkFactorsPerDimension(currentLevel); typename TFilter::SmoothingSigmasArrayType smoothingSigmas = filter->GetSmoothingSigmasPerLevel(); typename TFilter::TransformParametersAdaptorsContainerType adaptors = filter->GetTransformParametersAdaptorsPerLevel(); const itk::ObjectToObjectOptimizerBase * optimizerBase = filter->GetOptimizer(); using GradientDescentOptimizerv4Type = itk::GradientDescentOptimizerv4; typename GradientDescentOptimizerv4Type::ConstPointer optimizer = dynamic_cast(optimizerBase); if (!optimizer) { itkGenericExceptionMacro("Error dynamic_cast failed"); } typename GradientDescentOptimizerv4Type::DerivativeType gradient = optimizer->GetGradient(); /* orig std::cout << " Current level = " << currentLevel << std::endl; std::cout << " shrink factor = " << shrinkFactors[currentLevel] << std::endl; std::cout << " smoothing sigma = " << smoothingSigmas[currentLevel] << std::endl; std::cout << " required fixed parameters = " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl; */ // debug: std::cout << " CL Current level: " << currentLevel << std::endl; std::cout << " SF Shrink factor: " << shrinkFactors << std::endl; std::cout << " SS Smoothing sigma: " << smoothingSigmas[currentLevel] << std::endl; std::cout << " RFP Required fixed params: " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl; std::cout << " LR Final learning rate: " << optimizer->GetLearningRate() << std::endl; std::cout << " FM Final metric value: " << optimizer->GetCurrentMetricValue() << std::endl; std::cout << " SC Optimizer scales: " << optimizer->GetScales() << std::endl; std::cout << " FG Final metric gradient (sample of values): "; if (gradient.GetSize() < 10) { std::cout << gradient; } else { for (itk::SizeValueType i = 0; i < gradient.GetSize(); i += (gradient.GetSize() / 16)) { std::cout << gradient[i] << ' '; } } std::cout << std::endl; } }; template int PerformBSplineExpImageRegistration(int argc, char * argv[]) { if (argc < 6) { std::cerr << "Missing parameters." << std::endl; std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv); std::cerr << " imageDimension fixedImage movingImage outputImage numberOfAffineIterations numberOfDeformableIterations" << std::endl; return EXIT_FAILURE; } using PixelType = double; using FixedImageType = itk::Image; using MovingImageType = itk::Image; using ImageReaderType = itk::ImageFileReader; auto fixedImageReader = ImageReaderType::New(); fixedImageReader->SetFileName(argv[2]); fixedImageReader->Update(); typename FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); fixedImage->Update(); fixedImage->DisconnectPipeline(); auto movingImageReader = ImageReaderType::New(); movingImageReader->SetFileName(argv[3]); movingImageReader->Update(); typename MovingImageType::Pointer movingImage = movingImageReader->GetOutput(); movingImage->Update(); movingImage->DisconnectPipeline(); using AffineTransformType = itk::AffineTransform; using AffineRegistrationType = itk::ImageRegistrationMethodv4; using GradientDescentOptimizerv4Type = itk::GradientDescentOptimizerv4; auto affineSimple = AffineRegistrationType::New(); affineSimple->SetFixedImage(fixedImage); affineSimple->SetMovingImage(movingImage); // Smooth by specified gaussian sigmas for each level. These values are specified in // physical units. Sigmas of zero cause inconsistency between some platforms. { typename AffineRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel; smoothingSigmasPerLevel.SetSize(3); smoothingSigmasPerLevel[0] = 2; smoothingSigmasPerLevel[1] = 1; smoothingSigmasPerLevel[2] = 1; // 0; affineSimple->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel); } using GradientDescentOptimizerv4Type = itk::GradientDescentOptimizerv4; typename GradientDescentOptimizerv4Type::Pointer affineOptimizer = dynamic_cast(affineSimple->GetModifiableOptimizer()); if (!affineOptimizer) { itkGenericExceptionMacro("Error dynamic_cast failed"); } #ifdef NDEBUG affineOptimizer->SetNumberOfIterations(std::stoi(argv[5])); #else affineOptimizer->SetNumberOfIterations(1); #endif affineOptimizer->SetDoEstimateLearningRateOnce(false); // true by default affineOptimizer->SetDoEstimateLearningRateAtEachIteration(true); using AffineCommandType = CommandIterationUpdate; auto affineObserver = AffineCommandType::New(); affineSimple->AddObserver(itk::IterationEvent(), affineObserver); { using ImageMetricType = itk::ImageToImageMetricv4; typename ImageMetricType::Pointer imageMetric = dynamic_cast(affineSimple->GetModifiableMetric()); if (imageMetric.IsNull()) { std::cout << "Test failed - too many pixels different." << std::endl; return EXIT_FAILURE; } imageMetric->SetFloatingPointCorrectionResolution(1e4); } ITK_TRY_EXPECT_NO_EXCEPTION(affineSimple->Update()); { using ImageMetricType = itk::ImageToImageMetricv4; typename ImageMetricType::Pointer imageMetric = dynamic_cast(affineOptimizer->GetModifiableMetric()); std::cout << "Affine parameters after registration: " << std::endl << affineOptimizer->GetCurrentPosition() << std::endl << "Last LearningRate: " << affineOptimizer->GetLearningRate() << std::endl << "Use FltPtCorrex: " << imageMetric->GetUseFloatingPointCorrection() << std::endl << "FltPtCorrexRes: " << imageMetric->GetFloatingPointCorrectionResolution() << std::endl << "Number of work units used: metric: " << imageMetric->GetNumberOfWorkUnitsUsed() << std::endl << " optimizer: " << affineOptimizer->GetNumberOfWorkUnits() << std::endl; } // // Now do the displacement field transform with gaussian smoothing using // the composite transform. // using RealType = typename AffineRegistrationType::RealType; using CompositeTransformType = itk::CompositeTransform; auto compositeTransform = CompositeTransformType::New(); compositeTransform->AddTransform(affineSimple->GetModifiableTransform()); using VectorType = itk::Vector; constexpr VectorType zeroVector{}; using DisplacementFieldType = itk::Image; auto displacementField = DisplacementFieldType::New(); displacementField->CopyInformation(fixedImage); displacementField->SetRegions(fixedImage->GetBufferedRegion()); displacementField->Allocate(); displacementField->FillBuffer(zeroVector); using DisplacementFieldTransformType = itk::BSplineExponentialDiffeomorphicTransform; using DisplacementFieldRegistrationType = itk::ImageRegistrationMethodv4; typename DisplacementFieldRegistrationType::Pointer displacementFieldSimple = DisplacementFieldRegistrationType::New(); auto fieldTransform = DisplacementFieldTransformType::New(); typename DisplacementFieldTransformType::ArrayType updateControlPoints; updateControlPoints.Fill(10); typename DisplacementFieldTransformType::ArrayType velocityControlPoints; velocityControlPoints.Fill(10); fieldTransform->SetNumberOfControlPointsForTheUpdateField(updateControlPoints); fieldTransform->SetNumberOfControlPointsForTheConstantVelocityField(velocityControlPoints); fieldTransform->SetConstantVelocityField(displacementField); fieldTransform->SetCalculateNumberOfIntegrationStepsAutomatically(true); displacementFieldSimple->SetInitialTransform(fieldTransform); displacementFieldSimple->InPlaceOn(); using CorrelationMetricType = itk::ANTSNeighborhoodCorrelationImageToImageMetricv4; auto correlationMetric = CorrelationMetricType::New(); typename CorrelationMetricType::RadiusType radius; radius.Fill(4); correlationMetric->SetRadius(radius); correlationMetric->SetUseMovingImageGradientFilter(false); correlationMetric->SetUseFixedImageGradientFilter(false); // correlationMetric->SetUseFloatingPointCorrection(true); // correlationMetric->SetFloatingPointCorrectionResolution(1e4); using ScalesEstimatorType = itk::RegistrationParameterScalesFromPhysicalShift; auto scalesEstimator = ScalesEstimatorType::New(); scalesEstimator->SetMetric(correlationMetric); scalesEstimator->SetTransformForward(true); scalesEstimator->SetSmallParameterVariation(1.0); auto optimizer = GradientDescentOptimizerv4Type::New(); optimizer->SetLearningRate(1.0); #ifdef NDEBUG optimizer->SetNumberOfIterations(std::stoi(argv[6])); #else optimizer->SetNumberOfIterations(1); #endif optimizer->SetScalesEstimator(nullptr); optimizer->SetDoEstimateLearningRateOnce(false); // true by default optimizer->SetDoEstimateLearningRateAtEachIteration(true); displacementFieldSimple->SetFixedImage(fixedImage); displacementFieldSimple->SetMovingImage(movingImage); displacementFieldSimple->SetNumberOfLevels(3); displacementFieldSimple->SetMovingInitialTransform(compositeTransform); displacementFieldSimple->SetMetric(correlationMetric); displacementFieldSimple->SetOptimizer(optimizer); // Shrink the virtual domain by specified factors for each level. See documentation // for the itkShrinkImageFilter for more detailed behavior. typename DisplacementFieldRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel; shrinkFactorsPerLevel.SetSize(3); shrinkFactorsPerLevel[0] = 3; shrinkFactorsPerLevel[1] = 2; shrinkFactorsPerLevel[2] = 1; displacementFieldSimple->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel); // Smooth by specified gaussian sigmas for each level. These values are specified in // physical units. typename DisplacementFieldRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel; smoothingSigmasPerLevel.SetSize(3); smoothingSigmasPerLevel[0] = 2; smoothingSigmasPerLevel[1] = 1; smoothingSigmasPerLevel[2] = 1; displacementFieldSimple->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel); using DisplacementFieldTransformAdaptorType = itk::BSplineExponentialDiffeomorphicTransformParametersAdaptor; typename DisplacementFieldRegistrationType::TransformParametersAdaptorsContainerType adaptors; for (unsigned int level = 0; level < shrinkFactorsPerLevel.Size(); ++level) { // We use the shrink image filter to calculate the fixed parameters of the virtual // domain at each level. To speed up calculation and avoid unnecessary memory // usage, we could calculate these fixed parameters directly. using ShrinkFilterType = itk::ShrinkImageFilter; auto shrinkFilter = ShrinkFilterType::New(); shrinkFilter->SetShrinkFactors(shrinkFactorsPerLevel[level]); shrinkFilter->SetInput(displacementField); shrinkFilter->Update(); typename DisplacementFieldTransformAdaptorType::Pointer fieldTransformAdaptor = DisplacementFieldTransformAdaptorType::New(); fieldTransformAdaptor->SetRequiredSpacing(shrinkFilter->GetOutput()->GetSpacing()); fieldTransformAdaptor->SetRequiredSize(shrinkFilter->GetOutput()->GetBufferedRegion().GetSize()); fieldTransformAdaptor->SetRequiredDirection(shrinkFilter->GetOutput()->GetDirection()); fieldTransformAdaptor->SetRequiredOrigin(shrinkFilter->GetOutput()->GetOrigin()); adaptors.push_back(fieldTransformAdaptor); } displacementFieldSimple->SetTransformParametersAdaptorsPerLevel(adaptors); using DisplacementFieldRegistrationCommandType = CommandIterationUpdate; typename DisplacementFieldRegistrationCommandType::Pointer displacementFieldObserver = DisplacementFieldRegistrationCommandType::New(); displacementFieldSimple->AddObserver(itk::IterationEvent(), displacementFieldObserver); ITK_TRY_EXPECT_NO_EXCEPTION(displacementFieldSimple->Update()); compositeTransform->AddTransform(displacementFieldSimple->GetModifiableTransform()); std::cout << "After displacement registration: " << std::endl << "Last LearningRate: " << optimizer->GetLearningRate() << std::endl << "Use FltPtCorrex: " << correlationMetric->GetUseFloatingPointCorrection() << std::endl << "FltPtCorrexRes: " << correlationMetric->GetFloatingPointCorrectionResolution() << std::endl << "Number of work units used: metric: " << correlationMetric->GetNumberOfWorkUnitsUsed() << " optimizer: " << displacementFieldSimple->GetOptimizer()->GetNumberOfWorkUnits() << std::endl; using ResampleFilterType = itk::ResampleImageFilter; auto resampler = ResampleFilterType::New(); resampler->SetTransform(compositeTransform); resampler->SetInput(movingImage); resampler->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resampler->SetOutputOrigin(fixedImage->GetOrigin()); resampler->SetOutputSpacing(fixedImage->GetSpacing()); resampler->SetOutputDirection(fixedImage->GetDirection()); resampler->SetDefaultPixelValue(0); resampler->Update(); using WriterType = itk::ImageFileWriter; auto writer = WriterType::New(); writer->SetFileName(argv[4]); writer->SetInput(resampler->GetOutput()); writer->Update(); // Check identity of forward and inverse transforms using ComposerType = itk::ComposeDisplacementFieldsImageFilter; auto composer = ComposerType::New(); composer->SetDisplacementField(fieldTransform->GetDisplacementField()); composer->SetWarpingField(fieldTransform->GetInverseDisplacementField()); composer->Update(); using MagnituderType = itk::VectorMagnitudeImageFilter; auto magnituder = MagnituderType::New(); magnituder->SetInput(composer->GetOutput()); magnituder->Update(); using StatisticsImageFilterType = itk::StatisticsImageFilter; auto stats = StatisticsImageFilterType::New(); stats->SetInput(magnituder->GetOutput()); stats->Update(); std::cout << "Identity check:" << std::endl; std::cout << " Min: " << stats->GetMinimum() << std::endl; std::cout << " Max: " << stats->GetMaximum() << std::endl; std::cout << " Mean: " << stats->GetMean() << std::endl; std::cout << " Variance: " << stats->GetVariance() << std::endl; if (stats->GetMean() > 0.1) { std::cerr << "Identity test failed." << std::endl; } return EXIT_SUCCESS; } int itkBSplineExponentialImageRegistrationTest(int argc, char * argv[]) { if (argc < 6) { std::cerr << "Missing parameters." << std::endl; std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv); std::cerr << " imageDimension fixedImage movingImage outputImage numberOfAffineIterations numberOfDeformableIterations" << std::endl; return EXIT_FAILURE; } switch (std::stoi(argv[1])) { case 2: PerformBSplineExpImageRegistration<2>(argc, argv); break; case 3: PerformBSplineExpImageRegistration<3>(argc, argv); break; default: std::cerr << "Unsupported dimension" << std::endl; return EXIT_FAILURE; } return EXIT_SUCCESS; }