/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include "itkAffineTransform.h" #include "itkDisplacementFieldTransformParametersAdaptor.h" #include "itkEuclideanDistancePointSetToPointSetMetricv4.h" #include "itkSyNImageRegistrationMethod.h" #include "itkTestingMacros.h" int itkSyNPointSetRegistrationTest(int itkNotUsed(argc), char * itkNotUsed(argv)[]) { constexpr unsigned int Dimension = 2; using PointSetType = itk::PointSet; using PointSetMetricType = itk::EuclideanDistancePointSetToPointSetMetricv4; auto metric = PointSetMetricType::New(); using PointSetType = PointSetMetricType::FixedPointSetType; using PointType = PointSetType::PointType; using PixelType = double; using FixedImageType = itk::Image; using MovingImageType = itk::Image; auto fixedPoints = PointSetType::New(); fixedPoints->Initialize(); auto movingPoints = PointSetType::New(); movingPoints->Initialize(); // two circles with a small offset PointType offset; for (unsigned int d = 0; d < PointSetType::PointDimension; ++d) { offset[d] = 2.0; } unsigned long count = 0; for (float theta = 0; theta < 2.0 * itk::Math::pi; theta += 0.1) { auto label = static_cast(1.5 + count / 100); PointType fixedPoint; float radius = 100.0; fixedPoint[0] = radius * std::cos(theta); fixedPoint[1] = radius * std::sin(theta); if (PointSetType::PointDimension > 2) { fixedPoint[2] = radius * std::sin(theta); } fixedPoints->SetPoint(count, fixedPoint); fixedPoints->SetPointData(count, label); PointType movingPoint; movingPoint[0] = fixedPoint[0] + offset[0]; movingPoint[1] = fixedPoint[1] + offset[1]; if (PointSetType::PointDimension > 2) { movingPoint[2] = fixedPoint[2] + offset[2]; } movingPoints->SetPoint(count, movingPoint); movingPoints->SetPointData(count, label); count++; } // virtual image domain is [-110,-110] [110,110] FixedImageType::SizeType fixedImageSize; FixedImageType::PointType fixedImageOrigin; FixedImageType::DirectionType fixedImageDirection; FixedImageType::SpacingType fixedImageSpacing; fixedImageSize.Fill(221); fixedImageOrigin.Fill(-110); fixedImageDirection.SetIdentity(); fixedImageSpacing.Fill(1); auto fixedImage = FixedImageType::New(); fixedImage->SetRegions(fixedImageSize); fixedImage->SetOrigin(fixedImageOrigin); fixedImage->SetDirection(fixedImageDirection); fixedImage->SetSpacing(fixedImageSpacing); fixedImage->Allocate(); using AffineTransformType = itk::AffineTransform; auto transform = AffineTransformType::New(); transform->SetIdentity(); metric->SetFixedPointSet(fixedPoints); metric->SetMovingPointSet(movingPoints); metric->SetVirtualDomainFromImage(fixedImage); metric->SetMovingTransform(transform); metric->Initialize(); // Create the SyN deformable registration method using VectorType = itk::Vector; constexpr VectorType zeroVector{}; using DisplacementFieldType = itk::Image; auto displacementField = DisplacementFieldType::New(); displacementField->CopyInformation(fixedImage); displacementField->SetRegions(fixedImage->GetBufferedRegion()); displacementField->Allocate(); displacementField->FillBuffer(zeroVector); auto inverseDisplacementField = DisplacementFieldType::New(); inverseDisplacementField->CopyInformation(fixedImage); inverseDisplacementField->SetRegions(fixedImage->GetBufferedRegion()); inverseDisplacementField->Allocate(); inverseDisplacementField->FillBuffer(zeroVector); using DisplacementFieldRegistrationType = itk::SyNImageRegistrationMethod; auto displacementFieldRegistration = DisplacementFieldRegistrationType::New(); using OutputTransformType = DisplacementFieldRegistrationType::OutputTransformType; auto outputTransform = OutputTransformType::New(); outputTransform->SetDisplacementField(displacementField); outputTransform->SetInverseDisplacementField(inverseDisplacementField); displacementFieldRegistration->SetInitialTransform(outputTransform); displacementFieldRegistration->InPlaceOn(); using DisplacementFieldTransformAdaptorType = itk::DisplacementFieldTransformParametersAdaptor; DisplacementFieldRegistrationType::TransformParametersAdaptorsContainerType adaptors; // Create the transform adaptors // For the gaussian displacement field, the specified variances are in image spacing terms // and, in normal practice, we typically don't change these values at each level. However, // if the user wishes to add that option, they can use the class // GaussianSmoothingOnUpdateDisplacementFieldTransformAdaptor unsigned int numberOfLevels = 3; DisplacementFieldRegistrationType::NumberOfIterationsArrayType numberOfIterationsPerLevel; numberOfIterationsPerLevel.SetSize(3); numberOfIterationsPerLevel[0] = 1; numberOfIterationsPerLevel[1] = 1; numberOfIterationsPerLevel[2] = 50; double varianceForUpdateField = 5; double varianceForTotalField = 0.0; displacementFieldRegistration->SetGaussianSmoothingVarianceForTheUpdateField(varianceForUpdateField); displacementFieldRegistration->SetGaussianSmoothingVarianceForTheTotalField(varianceForTotalField); DisplacementFieldRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel; shrinkFactorsPerLevel.SetSize(3); shrinkFactorsPerLevel.Fill(1); DisplacementFieldRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel; smoothingSigmasPerLevel.SetSize(3); smoothingSigmasPerLevel.Fill(0); for (unsigned int level = 0; level < numberOfLevels; ++level) { // We use the shrink image filter to calculate the fixed parameters of the virtual // domain at each level. To speed up calculation and avoid unnecessary memory // usage, we could calculate these fixed parameters directly. using ShrinkFilterType = itk::ShrinkImageFilter; auto shrinkFilter = ShrinkFilterType::New(); shrinkFilter->SetShrinkFactors(shrinkFactorsPerLevel[level]); shrinkFilter->SetInput(displacementField); shrinkFilter->Update(); auto fieldTransformAdaptor = DisplacementFieldTransformAdaptorType::New(); fieldTransformAdaptor->SetRequiredSpacing(shrinkFilter->GetOutput()->GetSpacing()); fieldTransformAdaptor->SetRequiredSize(shrinkFilter->GetOutput()->GetBufferedRegion().GetSize()); fieldTransformAdaptor->SetRequiredDirection(shrinkFilter->GetOutput()->GetDirection()); fieldTransformAdaptor->SetRequiredOrigin(shrinkFilter->GetOutput()->GetOrigin()); fieldTransformAdaptor->SetTransform(outputTransform); adaptors.push_back(fieldTransformAdaptor); } displacementFieldRegistration->SetFixedPointSet(fixedPoints); displacementFieldRegistration->SetMovingPointSet(movingPoints); displacementFieldRegistration->SetNumberOfLevels(3); displacementFieldRegistration->SetMovingInitialTransform(transform); displacementFieldRegistration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel); displacementFieldRegistration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel); displacementFieldRegistration->SetMetric(metric); ITK_TRY_EXPECT_NO_EXCEPTION(displacementFieldRegistration->Update()); // applying the resultant transform to moving points and verify result std::cout << "Fixed\tMoving\tMovingTransformed\tFixedTransformed\tDiff" << std::endl; PointType::ValueType tolerance = 0.1; float averageError = 0.0; for (unsigned int n = 0; n < movingPoints->GetNumberOfPoints(); ++n) { // compare the points in virtual domain PointType transformedMovingPoint = displacementFieldRegistration->GetModifiableTransform()->GetInverseTransform()->TransformPoint( movingPoints->GetPoint(n)); PointType fixedPoint = fixedPoints->GetPoint(n); PointType transformedFixedPoint = displacementFieldRegistration->GetModifiableTransform()->TransformPoint(fixedPoints->GetPoint(n)); PointType difference; difference[0] = transformedMovingPoint[0] - fixedPoint[0]; difference[1] = transformedMovingPoint[1] - fixedPoint[1]; std::cout << fixedPoints->GetPoint(n) << '\t' << movingPoints->GetPoint(n) << '\t' << transformedMovingPoint << '\t' << transformedFixedPoint << '\t' << difference << std::endl; averageError += ((difference.GetVectorFromOrigin()).GetSquaredNorm()); } unsigned int numberOfPoints = movingPoints->GetNumberOfPoints(); if (numberOfPoints > 0) { averageError /= static_cast(numberOfPoints); std::cout << "Average error: " << averageError << std::endl; if (averageError > tolerance) { std::cerr << "Results do not match truth within tolerance." << std::endl; return EXIT_FAILURE; } } else { std::cerr << "No points." << std::endl; return EXIT_FAILURE; } return EXIT_SUCCESS; }