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Chapter 1

Images

Contrary to the classical notion of image employed in image processing, a medical image
corresponds to the acquisition of an 3D (anatomical) volume1. The volume is discretized
by first defining a virtual grid in the volume to acquire. Each element of the grid, called
voxel for volume element, receive a value computed from the integration of a given signal
on an elementary volume centered on the considered voxel. The grid and its associated
values are then stored into a 3D array.

Considering the 3D array to represent a volume has been norm the for long. However,
over the years, research studies proved that adding geometrical and anatomical informa-
tion allowed to greatly improve computations. For instance, the information relative to
the voxel size – distance between two adjacent voxels – has been proved to be very useful
if not essential. Recent acquisition devices provide more geometrical (or positioning) in-
formation, such as image origin and image orientation, that may really help any process
on images (see Figure 1.1).
As a consequence, for each image, we have two different coordinate systems. First, the
image coordinate system allow to access to the voxel value using classical indexes (e.g.
I(i, j, k)). Second, the world coordinate system position each voxel according to a coordi-
nate system shared by all images. These coordinate systems and the projection from one
system to the other one are presented in section 1.1.

Most if discretization implies a lost of information. The notion of image interpolation,
well know in the image processing community, tries to recover the information lost during
this discretization process. We present briefly in section 1.2 some interpolation algorithms
used in medical imaging.

1.1 Coordinate systems

Let I be a 3D image. If we consider I as an array in a 3-dimensional space, the element
of the array in voxel coordinates can be accessed by I(i, j, k) where i, j, and k are natural
numbers including 0. Given the voxel coordinates (i, j, k), how to project these coordinates
into the world coordinates, and conversely? In this section, we answer this simple but
essential question.

1We consider here only 3D scalar images. Generalization to other dimensions and other modalities can
be trivially deduced from the 3D case.
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2 CHAPTER 1. IMAGES

Figure 1.1: Acquisition of two images at different angles of incidence. Without posi-
tion information (bottom left picture), the two acquisition cannot be superimposed and
are difficult to compare. With the position information (bottom right picture), the two
acquisition are trivially superimposed.

1.1.1 Projection of coordinates

Given a 3D image I, let A be a matrix 3×3 and T be a vector in the 3-dimensional space.
A and T contain the necessary information to position the 3D array (grid) into the world
coordinates. Let (i, j, k) be voxel coordinates, the corresponding position in the word
coordinates is given by: xy

z

 = A.

 ij
k

 + T (1.1)

where

T =

txty
tz

 (1.2)

and

A =

a1,1 a1,2 a1,1

a2,1 a2,2 a2,1

a3,1 a3,2 a3,1

 . (1.3)

T contains the position of the image origin in world coordinates while A contains
information on voxel size and image orientation. This projection from the voxel to the
world coordinates usually uses a 4×4 matrix in homogeneous coordinates:

x
y
z
1

 = M.


i
j
k
1

 (1.4)

where
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M =


a1,1 a1,2 a1,1 tx
a2,1 a2,2 a2,1 ty
a3,1 a3,2 a3,1 tz
0 0 0 1

 (1.5)

Both projections (1.1) and (1.4) are identical and we will use in this report one or the
other.

Let us now consider (x, y, z) a 3D position in the world coordinates. The projection
of this point into the voxel coordinates (i, j, k) is given by: ij

k

 = A−1.

xy
z

− T
 (1.6)

One should note that i, j, k value are not necessarily integer. If so, the value I(i, j, k)
is then obtained by image interpolation. This notion will be discussed on section 1.2. If
we consider a 4×4 matrix in homogeneous coordinates, the projection from world to voxel
coordinates is given by: 

i
j
k
1

 = M−1.


x
y
z
1

 (1.7)

For clarity purpose, we may write in this report I(x, y, z) (or simply I(x) where x =
(x, y, z)) where (x, y, z) are world coordinates. The notation I(x, y, z) is abusing and we
define

I(x, y, z) , I(i, j, k) (1.8)

where (i, j, k) is the projection of (x, y, z) into the voxel coordinates. The nature of
the coordinates will indicate which notation is used.

1.1.2 Positioning information in itk::Image object

The ITK image format (itk::Image) contains the three following information to position
any image into the world coordinated:

• position of image origin

• voxel size

• image orientation (called direction cosine)

These information are respectively retrieved using functions GetOrigin(), GetSpac-
ing(), and GetDirection(), functions inherited from objet itk::ImageBase. Image
origin and voxel size (respectively noted T and S) are stored as vector in a 3-dimensional
space (itk::Vector):

T =

txty
tz

 (1.9)
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S =

sx

sy

sz

 (1.10)

Image orientation is stored as a 3×3 matrix (itk::Matrix) noted here D:

D =

d1,1 d1,2 d1,1

d2,1 d2,2 d2,1

d3,1 d3,2 d3,1

 (1.11)

To be consistent with notations introduction in Eq. (1.1), we define the 3×3 matrix A
as follows:

A = D.Sdiag (1.12)

where

Sdiag =

sx 0 0
0 sy 0
0 0 sz

 . (1.13)

Vector T and matrix A allow to project voxel to world coordinates, and conversely
(see Eq. (1.1)).

1.1.3 Positioning information in Inrimages image format

The Inrimage format contains all the information needed to position any image into the
world coordinated:

• TX, TY , and TZ is the position of the image origin (resp. along the X-, Y-, and
Z-axes),

• V X, V Y , and V Z give the voxel size,

• RX, RY , and RZ correspond to the image orientation.

As in section 1.1.2, we define the vector T and S as follows:

T =

TXTY
TZ

 (1.14)

S =

V XV Y
V Z

 (1.15)

The image orientation (noted D in section 1.1.2) is computed from values RX, RY et
RZ. First, we define the vector R as follows:

R =

RXRY
RZ

 . (1.16)

Then, let N be the normalized vector
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N =

nx

ny

nz

 =

RX/φRY/φ
RZ/φ

 (1.17)

where φ is the Euclidean norm of R. Finally, the orientation matrix D is given by:

D = cosφ

1 0 0
0 1 0
0 0 1

+(1−cosφ)

 n2
x nxny nxnz

nxny n2
y nynz

nxnz nxny n2
z

+sinφ

 0 −nz ny

nz 0 −nx

−ny nx 0

 (1.18)

As in section 1.1.2, the 3×3 matrix A defined in Eq. (1.1) an necessary to project voxel
coordinates into the world coordinates is given by:

A = D.Sdiag (1.19)

1.2 Image interpolation

Let I be an image of size [w, h, d] (resp. width, height, and depth). As explained in
section 1.1, the image is the representation (discretization) of a volume in the world
coordinate system. Let x = (x, y, z) be the coordinates of a point in the world coordinate
such that x is included into the acquired volume. In other words, if i = (i, j, k) is the
projection of x in the voxel coordinates (see section 1.1.1), we have:

i ∈ [0, w − 1]× [0, h− 1]× [0, d− 1] (1.20)

If x is randomly drawn in the image volume, the coordinates (i, j, k) are probably not
integer and I(i, j, k) is not defined. The image interpolation consists in computing the
image value at any index (i, j, k) – integer or not – usually using the local neighborhood
of (i, j, k). Many algorithms have been proposed in the literature and we present in this
section a very short list of the most classical interpolation methods. In the case of (i, j, k)
are out of the image bound is usually treated differently from the case where (i, j, k) are
in the image bound. This case will not be treated below.

1.2.1 Nearest neighbor interpolation

The interpolation to the nearest neighbor is the fastest and the simplest interpolation
method. Given (i, j, k) a non integer voxel coordinates, the image value at (i, j, k) is given
by

I(i, j, k) , I(i, j, k) (1.21)

where (i, j, k) are respectively the round to the nearest integer of (i, j, k). One particularity
of the nearest neighbor interpolation – which can be considered as an issue – is that the
image value is constant on an elementary volume centered around the integer coordinates
; if (i, j, k) are here integer coordinates, we have

I(i+ ε1, j + ε2, k + ε3) = I(i, j, k) (1.22)

for εi={1,3} ∈ (−0.5, 0.5). Note that in the case where |εi={1,3}| = 0.5, the selected nearest
neighbor depends on the implementation of the rounding procedure. Usually, the nearest
neighbor of i+ 0.5 is i+ 1, and, as a consequence, the nearest neighbor of i− 0.5 is i.
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1.2.2 Linear interpolation

Given a a real number, we define dae and bac respectively as the round up (towards plus
infinity) andthe round down (towards minus infinity) of a. Let (i, j, k) be non integer voxel
coordinates, and let α, β, γ be the weights defined as:

α =die − i (1.23)
β =dje − j (1.24)
γ =dke − k (1.25)

(1.26)

The coordinates (i, j, k) belongs by definition to the intervale [bic, die]× [bjc, die]× [bic, dke].
This intervale corresponds to a cuboid in the world coordinates where each one of its height
corners is an element of the grid. The tri-linear interpolation uses the image values at these
corners, the value at a given corner being simply weighted by a function of the distance
between of the corner and the index (i, j, k):

I(i, j, k) , I(bic, bjc, bkc) ∗ αβγ
+ I(die, bjc, bkc) ∗ (1− α)βγ
+ I(bic, dje, bkc) ∗ α(1− β)γ
+ I(bic, bjc, dke) ∗ αβ(1− γ)
+ I(die, dje, bkc) ∗ (1− α)(1− β)γ
+ I(die, bjc, dke) ∗ (1− α)β(1− γ)
+ I(bic, dje, dke) ∗ α(1− β)(1− γ)
+ I(die, dje, dke) ∗ (1− α)(1− β)(1− γ (1.27)

One interesting property of this interpolation method is that, contrary to the nearest
neighbor interpolation method, there are no discontinuity in terms of values in the image
volume. Moreover, the formula (1.27) is still valid even if (i, j, k) are valid integer coordi-
nates.
However, if the initial image was coded for instance on integer (e.g. short), the inter-
polation introduce non integer value that may be not adapted for some processing or
visualization. In this case, the nearest neighbor interpolation is more adapted.



Chapter 2

Transformations

2.1 Linear transformation

A linear transformation is a function between two vector spaces (3-dimensional spaces in
our case) that preserves the operations of vector addition and scalar multiplication. A
linear transformation in a 3-dimensional space (input and output vector space) is usually
given as a 4× 4 matrix in homogeneous coordinates:

M =


m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

0 0 0 1

 (2.1)

Let p be a point inR3 and M be a linear transformation in the same space. The application
of M to p

p′ = M.p (2.2)

transform p into a new point p′.

2.1.1 Rigid transformation

A rigid transformation preserves distances between every pair of points (isometry). In
particular, any object will have the same shape and size before and after a rigid transfor-
mation.
A rigid transformation (in a 3-dimensional space) is parametrized by 6 parameters: 3 pa-
rameters for the rotation (resp. around the X-, Y-, and Z-axes) and 3 parameters for the
translation. The parametrization of a rigid transformation is not unique. A parametriza-
tion is given relatively to a specific interpretation of these parameters. In ITK, there is
at least two rigid transformation objects: RigidTransform and Euler3DTransform. The
3 rotation parameters correspond to a rotation vector for RigidTransform and to Euler’s
angles for Euler3DTransform. Given the 6 parameters and their associate interpretation,
one can compute the 4× 4 matrix as presented in 2.1.

2.1.2 Affine

An affine transformation preserves the collinearity relation between points and the ratios
of distances along a line.
An affine transformation is parametrizes by 12 parameters: 3 for the rotation, 3 for the
translation, 3 for the scaling, and 3 for the shearing. One may notice that the number of

7



8 CHAPTER 2. TRANSFORMATIONS

parameters of an affine transformation is equal to the number of parameters of a linear
transformation (see (2.1). Along with the parameters, an associated interpretation is
needed in order to generate the corresponding transformation matrix.
In practice the parameters of an affine transformation are usually directly the parameters
of the corresponding linear transformation (see (2.1)) since the number of parameters
is similar. In this case, no parameter interpretation is required. This is the case for
instance for the parameters of any ITK AffineTransform object. However, in the case of
optimization for instance, one may still want to consider the initial parametrization (e.g.
rotation, translation, etc. separated) in order to increase the precision and the robustness
of the parameter estimation by adding some a priori on parameters.

2.2 Displacement field

In the context of medical imaging, a displacement field (DF for short) corresponds usually
to a 3D grid defined into the 3D vector space. A 3D displacement vector is assigned to
each element of the grid, hence the name displacement field. Like for images, each ele-
ment of the grid can be projected to the world coordinate system using the position and
orientation information associated to the field. The transformation is defined in a finite
number of points and one should use a field interpolation (such as linear interpolation) to
get the transformation in any point of the vector space.

A DF is usually stored into a vector image since the data organization is similar. The
difference is indeed the interpretation of the content which is the integration of a signal
on an elementary volume for an image, and a displacement for a DF. Storing a DF into
an image is therefore very convenient.
If we consider now the programming point of view, considering a DF as an image is a mis-
take since an image is not a transformation. Mixing both notions may be quite confusing
and dangerous. For instance, let us consider the ITK way of dealing with DFs. DFs are
stored are store into ITK image objects. If one wants to resample an image using a DF,
on should use the itk::WarpImageFilter which apply an image – the considered DF –
to another image, and this clearly doesn’t make sense. Moreover, displacement field is not
the only field-type transformation (e.g. stationary velocity field). By considering a field
as an image, a programmer cannot know what kind of field he is dealing with, unless the
variable referencing the DF is correctly named which is usually too much to ask.
To overcome this problem, we propose a new ITK transformation object named itk::-
DisplacementFieldTransform which inherits from the itk::Transform class. In par-
ticular, itk::DisplacementFieldTransform allows to transform any point of the vector
space (using linear interpolation) and is able to compute the spatial Jacobian (matrix)
in any point. Because itk::DisplacementFieldTransform is an actual itk::Transform
object, one may directly use itk::ResampleImageFilter to resample an image, which
is much more convenient than using itk::WarpImageFilter. Finally, we propose the
method GetParametersAsVectorField which returns a pointer the DF as an itk::Image
in order to use the already implemented ITK filters specialized for DF.

2.3 Stationary velocity field

A stationary velocity field (SVF for short) is very similar to a displacement field, the dif-
ference being in the interpretation of the information (vector) assigned to each element of
the grid. For SVFs, the vector represents a velocity which has to be integrated over time
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to deduce a displacement.
Similarly to DFs, SVFs are usually stored into itk::Image objects which brings the
same benefits and problems as for DFs (see section 2.2). Once again, we propose a so-
lution with a new ITK transformation object named itk::StationaryVelocityField-
Transform. As for itk::DisplacementFieldTransform, itk::StationaryVelocity-
FieldTransform inherits from the itk::Transform class. For instance, the class allows
to transform any point of the vector space and the method GetLogSpatialJacobianDe-
terminant computes the log determinant of the spatial Jacobian matrix.
The itk::StationaryVelocityFieldTransform can be used to resample an image us-
ing the itk::ResampleImageFilter filter. However, one should never use an itk::-
StationaryVelocityFieldTransform to do it because it will literally take days to com-
plete the resampling. Instead, one should generate a DF directly from the considered SVF.
Let svf be a itk::StationaryVelocityFieldTransform (of dimension 3 and coded on
float) that we want to convert into a itk::DisplacementFieldTransform:

typede f i t k : : DisplacementFieldTransform<f l o a t ,3> DFType ;
typename DFType : : Po inter df = DFType : : New( ) ;
df−>SetParametersAsVectorFie ld ( svf−>GetDisplacementFie ldAsVectorFie ld ( )

) ;

The methods GetLogSpatialJacobianDeterminant and GetDisplacementFieldAsVec-
torField depend on a scheme parameter. The scaling and squaring scheme is fast but
tends to be noisy and not reliable if the transformation is too big. The forward Euler
scheme is longer to compute but it is much more stable and reliable.
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Chapter 3

Registration API

3.1 Goal

MIPS1 is a set of tools (C++ libraries and executables) offering a suite of functionalities for
processing and visualizing medical images and geometric meshes. The image registration
tools, which now represent a major part of MIPS, have been developed for years by the
different members of the Epidaure and Asclepios teams. Due to different causes (multiple
image formats, evolution of registration technics, etc.) it is quite hard to compare two
methods. For the same reasons, using two different methods into a registration workflow
or simply switch from one method to another one is a complicated task. At best, one
usually has to write huge and complex conversion procedures which is not trivial and
is very time consuming. The goal of the registration API2 is to address these issues
by proposing a simple an intuitive interface shared by all registration methods. This
common interface greatly simplifies the user experience while helping the author of a new
registration method to focus on the algorithm, not on the user interface. We call this
interface RPI for Registration Programming Interface.

3.2 RPI Specifications

3.2.1 RegistrationMethod class

RPI defines a C++ programming class named RegistrationMethod. This class gives to
a method author a strict but simple programming framework. The RegistrationMethod
class is an abstract class and does not allow to register images. Its purpose is to provide a
common interface which has been designed to cover most of registration methods. In this
section, we will briefly present the RegistrationMethod class and its key features. The
presented code has been intentionally simplified to clarify the explanation. One should
read the source code for a complete and accurate specification of RPI.

RegistrationMethod is a templated class:

template < c l a s s TFixedImage ,
c l a s s TMovingImage ,

1Medical Image Processing and Simulation
2Application Programming Interface

11
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c l a s s TTransformScalar > c l a s s Registrat ionMethod

TFixedImage and TMovingImage respectively represent the types of the fixed and the
moving image. TFixedImage and TMovingImage must be itk::Image objects. As you
may know, itk::Image is templated over the the image dimension and the pixel type.
Dimension is usually 3 while pixel type can be either a scalar type (e.g. short, float,
etc.) or can be a itk::Vector for diffusion tensor images (DTI for short). Type TTrans-
formScalar defines the type of the transformation parameters (e.g. type of each element
of a affine transformation matrix). It should be either float or double. Some registration
methods support different types of images and/or different types of transformation param-
eters (e.g. Optimus method) while other methods only support one type of images (e.g.
Log-demons) or transformation parameters. In all cases, the image and transformation
parameter types supported by a given registration method must clearly be stated in the
code documentation. It is not of the responsibility of the user to guess the type of images
and transformation parameters supported.

The RegistrationMethod class provides all the basic necessary functions to register
two images. First, the fixed and the moving images can be set and get using the following
accessors:

TFixedImage : : ConstPointer GetFixedImage ( void ) ;
void SetFixedImage ( const TFixedImage ∗ image ) ;
TMovingImage : : ConstPointer GetMovingImage ( void ) ;
void SetMovingImage ( const TMovingImage ∗ image ) ;

Images must contain all the information necessary to orient and positioned images in
the real word coordinates. One should note that the notion of smart pointer used here
(Pointer and ConstPointer) is very common in ITK. The registration process can be
started using the function:

v i r t u a l void S t a r t R e g i s t r a t i o n ( void ) = 0 ;

As the reader may notice, this function is pure virtual since this class is only meant to be
inherited. Once the registration process is complete, one can get the output transformation
using the function:

TransformPointerType GetTransformation ( void ) const ;

where

typede f i t k : : Transform< TTransformScalarType ,
TFixedImage : : ImageDimension ,
TMovingImage : : ImageDimension > TransformType ;

typede f typename TransformType : : Po inter TransformPointerType ;

The computed transformation must be a transformation in the real world coordinates
allowing to resample the moving image, i.e. the transformation from the fixed image to
the moving image.
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Images and transformations are stored into ITK containers. This choice was decided by
the Asclepios team members and was justify by the following points:

• ITK is an open-source library.

• The ITK code is maintained by hundreds of developers.

• All the registration methods recently developed by the team use ITK objects for
images and transformations.

• The IO procedures to read/write images and transformations are provided by ITK.

• Most of image format are supported by ITK.

• ITK provides useful tools to manipulate images and transformations.

Any transformation computed by any registration method of RPI must inherit from the
itk::Transform class (see section2).

ITK also provides a registration framework and one may ask why RPI is not included
into this framework. The ITK registration framework is too specific and does not allow
to easily integrate few of Asclepios’ registration methods such as Baladin and SuperBaloo.
As a consequence, it has been decided not to base the registration API on this framework
but to design a new framework more simple and more generic. Only the ITK containers
were used for the reasons given previously.

3.2.2 Creating a new registration class

Any registration method of RPI must inherit from the super class RegistrationMethod.
By definition, a registration method (i.e. derived class) inherits all the necessary functions
to set inputs, start registration, and get the output transformation. Most of registration
methods use parameters to modify the method behavior. The parameters (class members)
as well as the corresponding accessors must be implemented into the method – derived
– class. Several registration methods share parameters such as the maximum number
of iterations. In order to have methods as consistent as possible, parameters should be
consistent as well (same member’s name, same accessor’s name). Finally, the code must
be clean, should use the latest programming standards, and must be well documented
(doxygen style).

3.2.3 Libraries

So far, most of registration methods of MIPS unfortunately can be called only using a
specific executable ; one of them offered a C++ library that could eventually be used within
a third party application such as MedInria. In RPI, every single registration method must
be compiled into a library. By following all the specifications presented in this document
(inheritance from RegistrationMethod, use ITK images and transformations, etc.), a
library corresponding to a given registration method (called here MyMethod) can then be
trivially used into an external application:

typede f MyMethod<TFixedImage , TMovingImage , TransformScalarType> Method ;

MyMethod ∗ method = new MyMethod ( ) ;
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method−>SetFixedImage ( f i x e d ) ;
method−>SetMovingImage ( moving ) ;
method−>S t a r t R e g i s t r a t i o n ( ) ;
t rans form = method−>GetTransformation ( ) ;

// Use the t rans format ion to do what you need to do . . .

d e l e t e method ;

This minimal code register the two images with default parameters. To modify the method
parameters, one should use the correct accessors.

3.2.4 Executables

Along with the library, each registration method must provide an executable based on its
library. The executable workflow should be (more or less) the following:

1. Read input images (paths given in the command line arguments).

2. Parse method parameters from command line arguments.

3. Create a registration object.

4. Set input images and method parameters.

5. Start registration.

6. Get and save the transformation into an output file.

7. Resample the moving image using the transformation and save it into an output file.

An important part of a usable executable is the parsing of the command line arguments.
Among all existing tools, we propose to use the TCAL library. TCLAP provides a simple
command line parser and automatically generates the usage information (“help”) using
options --help or -h. The author must pay an extra attention to the description of the
usage information. It is usually the only available help a user may have to learn how to
correctly use a given executable.

All registration executables must share the following options:

• -f and --fixed-image allows to specify the path to the fixed image.

• -m and --moving-image allows to specify the path to the moving image.

• -t and --output-transform allows to specify the path to the output transformation.

• -i and --output-image allows to specify the path to the output image (moving
image resampled).

One easily understands that since these options define the minimal input of any registra-
tion method, it becomes trivial to switch from one registration method to another one.
Only advanced options must be modified.

Finally, since only a single library is shared by all applications (executable and third
party application), there is no duplication of the registration code. All contributors work
on the same code. The code is then easier to maintain and contains necessarily less
bugs. The transformation computed by an executable or by third party application (same
method and same parameters) is by definition identical.
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3.2.5 TRex

In order to help researchers and engineers to develop and integrate their registration
method into RPI, we have developed a toy example. This example named TRex – for Toy
Registration EXample – is a registration method fully based on ITK. The transformation
computed is a rigid transformation and the optimization method is a simple gradient
descent. This example shows how to write a registration method (class) inheriting from
RegistrationMethod, how to compile the class into a library, and how to write the code
which will be compiled into a usable executable with the appropriate usage information.
This example is simple, well documented and very easy to understand. The method has
only one parameter.

3.2.6 Observers

Depending on the registration method, the set of parameters used, and the input images,
the registration process may be very long task. If the considered method is included into
an application such as MedInria, it can be very useful to know the progression of the
registration process. For instance, the software is usually waiting for the process to be
finished before updating the current view. Therefore, we have developed an event observer.
An observer is an object which is linked to the considered registration method. When the
progression of the registration process changes (e.g. registration starts, stops, etc.), all
the observers are notified. Each notified observer does a specific task defined by the user,
for instance update the current view if the registration process is finished.
The observer class in RPI is named rpi::Observer and is based on a very simple but
efficient design pattern. A user that would want to define an observer must create a class
that inherits from rpi::Observer and implement the Update() method which will be
called by the registration method during the notification to observers:

template < c l a s s TFixedImage ,
c l a s s TMovingImage ,
c l a s s TTransformScalarType=double >

c l a s s MyObserver : pub l i c r p i : : Observer<TFixedImage ,
TMovingImage ,
TTransformScalarType>

{
pub l i c :

typede f r p i : : RegistrationMethod<TFixedImage ,
TMovingImage ,
TTransformScalarType> Method ;

void Update ( void )
{

i f ( th i s−>m registrat ionMethod−>GetReg i s t ra t i onStatus ( )==
Method : : REGISTRATION STATUS PROCESSING)

{
std : : cout << ” I am p r o c e s s i n g . . . ” << std : : endl ;

}
e l s e i f ( th i s−>m registrat ionMethod−>GetReg i s t ra t i onStatus ( )==

Method : : REGISTRATION STATUS STOP)
{

std : : cout << ” I have f i n i s h e d ! ” << std : : endl ;
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}
}

} ;

The observer is a templated class since the observer object must contain an instance of
the rpi::RegistrationMethod object. The signification of the templates is similar too
the templates used by rpi::RegistrationMethod. In the example given previously, one
understand what does the considered observer: the Udpate() method displays ”I have
finished!” if the registration process is finished, and ”I am processing...” otherwise.
To attach an observer to a registration method, simply use the AttachObserver() method.
The class rpi::RegistrationMethod also provides the methods GetRegistrationSta-
tus() and SetRegistrationStatus() which respectively gets and sets the status of the
registration process. Two status are provided: REGISTRATION STATUS PROCESSING and
REGISTRATION STATUS STOP. These two status represent the minimum information on the
registration status one could expect. However, if a registration method provides a better
granularity of the registration progression, this fineness may be used by the observer. In
this case, the considered method updates a specific instance variable at each iteration of
the algorithm and notify its associated observer. Then, the observers can access – directly
in the Update() method – to the improved progression status using the adapted accessor.
This can be very useful for progression bar for instance.

3.3 RPI methods

In this section, we briefly present all the registration methods implemented into RPI. For
a complete and accurate description of the method and of the parameters used, please
refer to the corresponding code and publication (if any).

3.3.1 Baladin

Baladin [ORPA00] is a registration method for scalar images and based on a pyramidal
block-matching algorithm. Blocks are built in the moving image and, for each block, the
most similar block is searched in the fixed image (exploration). Each paring of blocks
defines a displacement vector. The set of displacement vector is finally used to estimate
a linear transformation from the fixed to the moving image. The linear transformation
computed can be a rigid transformation, a similitude, or an affine transformation.
The output transformation computed by the library is represented as an itk::Affine-
Transform<ScalarType,3> object where ScalarType is either float or double. The
output transformation computed by the executable is represented by an itk::Affine-
Transform<double,3> stored into a text file.
Baladin can be initialized with a linear transformation (rigid, similitude, or affine) com-
puted using Baladin, Baloo, or Optimus. If no initial transformation is provided, the initial
transformation is simply the identity. If the type of the initial transformation is different
from the type specified, the output transformation may not be of the type specified. The
reason is that Baladin computes a linear transformation of the specified type that will
be fused to the global transformation. For instance, if the initial transformation is the
identity, the composition of rigid transformations is a rigid transformation. However, if
the initial transformation is affine, the composition of affine and rigid transformations is
an affine transformation.
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3.3.2 Optimus

Optimus is a registration method for scalar images and based on the New UOA optimizer of
Powell. The transformation computed by the registration method is a rigid transformation
represented as an itk::Euler3DTransform<double,3> object and written into a text file
for the executable. Optimus can only be initialized by an itk::Euler3DTransform<double,3>
transformation. So far, the only registration in RPI able to compute an itk::Euler3D-
Transform<double,3> is Optimus.

3.3.3 Baloo

Baloo is a registration method for scalar and tensor images (2 classes) and based on
a pyramidal block-matching algorithm. The transformation computed by the registra-
tion method is a linear transformation among rigid, similitude, or affine transformation.
The output transformation computed by the library is represented as an itk::Affine-
Transform<ScalarType,3> object where ScalarType is either float or double. The
output transformation computed by the executable is represented by an itk::Affine-
Transform<double,3> stored into a text file. Baloo cannot be initialized by any transfor-
mation.

3.3.4 SuperBaloo

Similarly to Baloo, SuperBaloo is a registration method for scalar and tensor images (2
classes) and based on a pyramidal block-matching algorithm. However, SuperBaloo com-
putes a displacement field transformation.
The output transformation computed by the library is represented as an itk::Displacement-
FieldTransform<ScalarType,3> object where ScalarType is either float or double.
The executable writes the output transformation into a vector image (NifTi, Inrimage,
NRRD, etc.) where values are coded as float. SuperBaloo cannot be initialized by any
transformation.

3.3.5 Diffeomorphic Demons

Diffeomorphic demons is a registration method for scalar images and based on the demons
algorithm. The difference with the classical demons is that the transformation computed
– a displacement field – is a diffeomorphism.
The output transformation computed by the library is represented as an itk::Displacement-
FieldTransform<ScalarType,3> object where ScalarType is either float or double.
The executable writes the output transformation into a vector image (NifTi, Inrimage,
NRRD, etc.) where values are coded as float.
The library can be initialized only by an itk::DisplacementFieldTransform<SclaraType,-
3> object. The executable can be initialized by a displacement field (vector image) or by
an (ITK) linear transformation. In the case of linear transformation, the input trans-
formation is converted into a displacement field which can initialize the corresponding
library.

3.3.6 Log-Demons

Log-Demons is a registration method for scalar images and based on the demons algo-
rithm. The difference with the classical demons is that the transformation computed is
a stationary velocity field (SVF for short) and not a displacement field. This type of
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transformation is a convenient tool for registration since a SVF can be trivially converted
into a displacement field that is a diffeomorphism.
The output transformation computed by the library is represented as an itk::Stationary-
VelocityFieldTransform<ScalarType,3> object where ScalarType is either float or
double. The executable writes the output transformation into a vector image (NifTi, In-
rimage, NRRD, etc.) where values are coded as float.
The library can be initialized only by an itk::StationaryVelocityFieldTransform-
<SclaraType,3> object. The executable can be initialized by a SVF (vector image) or by
an (ITK) linear transformation. In the case of linear transformation, the input transfor-
mation is converted into a SVF which can initialize the corresponding library.

3.3.7 Incompressible Log-Demons

Incompressible Log-demons – or iLogDemons for short – is a registration method for scalar
images and based on the Log-demons algorithm. The transformation computed is a sta-
tionary velocity field (SVF for short). The difference with the Log-demons is that the
method accept an input mask image ; the iLogDemons adds a constraint on the computed
SVF so that the volume of the zone defined into the mask is similar before and after
applying the transformation.
The output transformation computed by the library is represented as an itk::Stationary-
VelocityFieldTransform<ScalarType,3> object where ScalarType is either float or
double. The executable writes the output transformation into a vector image (NifTi, In-
rimage, NRRD, etc.) where values are coded as float.
The library can be initialized only by an itk::StationaryVelocityFieldTransform-
<SclaraType,3> object. The executable can be initialized by a SVF (vector image) or by
an (ITK) linear transformation. In the case of linear transformation, the input transfor-
mation is converted into a SVF which can initialize the corresponding library.

3.4 Image resampling

3.4.1 Theory

Let F and M be respectively the fixed and the moving images. If we want to register M
on F , we want to modify M so that the modified – or transformed – version of M can be
superimposed on F . Instinctively, one would want to estimate the transformation from M
to F in order to apply this transformation to M . Well, in fact, we need the transformation
from F to M to resample M in the geometry of F . This is not trivial and we will try to
convince you in this section.
Let M̃ be the resampled version of M in the geometry of F . Theoretically, M̃ and F can
be superimposed and then compared for diagnosis purpose for instance. First, we create
an empty image M̃ which has exactly the same geometrical properties of F (image size,
voxel size, orientation, and origin). Second, we have to fill M̃ with information taken
from image M . Let (i, j, k) be an index (voxel coordinates) of M̃ and let (x, y, z) be the
corresponding world coordinates. Then, let TF→M be the transformation from F to M .
The value assigned to M̃(x, y, z) (world coordinates) is given by:

M̃(x, y, z) = M(F→M (x, y, z)) (3.1)

If the world coordinates TF→M (x, y, z) are not defined on the grid ofM , M(F→M (x, y, z))
is estimated by image interpolation (see section 1.2).
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In other words, to resample M , we go through the voxels of M̃ . For each voxel of M̃ we
deduce the position of the corresponding voxel into M using the transformation F→M , and
then we take the value at this position in M and assigned it to the initial position in M̃ .

Still not convince? Let’s see now what would happen if we had the transformation
TM→F from M to F . As before, we first create an empty image M̃ which has exactly the
same geometrical properties of F . We go through M and for each voxel of M , we send its
corresponding value to M̃ using TM→F . If (x, y, z) is the world coordinates of a voxel of
M , we have:

M̃(TM→F (x, y, z)) = M(x, y, z) (3.2)

First difficulty here, if coordinates TM→F (x, y, z) are not defined on the grid of M̃ , how
to assign – or distribute – the value M(x, y, z) in M̃? For the next problem, let us assume
that coordinates TM→F (x, y, z) are always defined on the grid of M̃ in order to simplify
the explanation. Let us consider the case where M contains n voxels while F contains
2n voxels. Using the second scheme (transformation from M to F ), one understands that
only half of voxels of M̃ will receive a value from M . The other half won’t be modified
and consequently M̃ will have ”holes”.

3.4.2 rpiResampleImage

The rpiResampleImage tool resample an input scalar image given an input transforma-
tion. The supported transformations are identity, linear transformations, displacement
field transformations, and stationary velocity field transformations computed using the
registration methods of RPI (but not only). The image specified using the --geometry
option is used to set the resample image geometry. If the --geometry option is not used,
the geometry of the resampled image will be either similar to the input image geometry if
the input transformation is a linear transformation, or will be similar to the geometry of
the input field is the input transformation is a displacement field or a stationary velocity
field. Several image interpolation methods are proposed.

3.5 Composition of transformations

3.5.1 Order of composition

Let us consider two images IF and IM (resp. fixed and moving images). We want to
register IM to IF and a common way to do it is to apply successively different registration
methods. In this example, we use three registration methods (e.g. rigid, affine, and non-
linear). First, we apply the first registration method between images IF and IM . We
obtain a transformation (form the fixed to the moving image) T0 and an image I0 (IM
re-sampled in the geometry of IF ):

method1(IF , IM )→ {T1, I1} (3.3)

Then we apply the second registration method between images IF and I1. By con-
sidering the image I1 instead of IM , we initialize the registration process by starting the
algorithm closer to the optimal transformation. We obtain a transformation T2 and an
image I2 (I1 re-sampled in the geometry of IF ):

method2(IF , I1)→ {T2, I2} (3.4)
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Finally, we apply the third registration method between images IF and I2. We obtain
a transformation T3 and an image I3 (I2 re-sampled in the geometry of IF ):

method3(IF , I2)→ {T3, I3} (3.5)

If we assume that the successive registration processes improved the image registra-
tion, the image I3 should be the image the most similar to IF , then I2, I1, and finally
IM . An important issue here is that I3 is the result of three consecutive re-samplings of
the initial moving image IM . In order to avoid the multiple approximations due to these
re-samplings, one may want to re-sample only once IM using the global transformation
from IF to IM . However, this global transformation is not T3 but the composition of T1,
T2, and T3. Indeed, T3 is the transformation from IF to I2 ; the image IM re-sampled
using T3 is probably not correctly registered onto IF .

Let us consider the image re-sampling of IM using T1. Let x = (x, y, z) be a point (in
the real world coordinates) in the real grid of the fixed image. The re-sampling is defined
as:

I1(x) = IM (T1(x)) (3.6)

Now, let us now consider the image re-sampling of I1 using T2:

I2(x) = I1(T2(x)) (3.7)
= IM (T1(T2(x)) (3.8)

Finally, we re-sample I2 using T3:

I3(x) = I2(T3(x)) (3.9)
= I1(T2(T3(x)) (3.10)
= IM (T1(T2(T3(x))) (3.11)

, IM (T1 ◦ T2 ◦ T3(x)) (3.12)

Eq. 3.12 shows that the global transformation allowing to re-sample the image IM onto
IF using a single global transformation T which is the composition of T1, T2, and T3:

T = T1 ◦ T2 ◦ T3 (3.13)

3.5.2 Composing transformations using rpiFuseTransformation

The rpiFuseTransformation executable is a program that allow to fuse (compose) a list
of transformation into a unique transformation. Since it is not possible yet – at least in a
general case – to store a list of transformations into a single file, we propose to store the
list as a XML file. This XML lists the type of each transformation and the path to the
files containing the transformations :

<?xml v e r s i on=” 1 .0 ” encoding=”UTF−8”?>

< l i s t o f t r a n s f o r m a t i o n s>
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<t rans format ion>
<type>l i n e a r </type>
<path>t0 . txt</path>
<i nver t>1</inver t>

</trans format ion>

<t rans format ion>
<type>d i s p l a c e m e n t f i e l d </type>
<path>t1 . n i i . gz</path>
<i nver t>0</inver t>

</trans format ion>

</ l i s t o f t r a n s f o r m a t i o n s>

In this example, we have 2 transformations. The first one (denoted T0) is a linear
transformation stored into the text file “t0.txt”. The second transformation (denoted T1) is
a displacement field stored into the – image – file “t1.nii.gz”. The computed transformation
is given by T0 ◦ T1. Thus, the order the transformations written into the XML file is
important since the composition of two transformations is usually not commutative (see
section 3.5.1). The XML file can contain any strictely positive number of transformations.
The meaning of the different tags is:

• Tag <listoftransformations> contains a set of transformations. This tag is manda-
tory.

• Tag <transformation> contains a transformation. This tag must be an element of
the tag <listoftransformations>. This tag is mandatory.

• Tag <type> contains the type of the considered transformation. The available types
are “linear”, “displacemendfield”, and “stiaionaryvelocityfield”. This tag must be
an element of the tag <transformation>. This tag is mandatory.

• Tag <path> contains the path to the file containing the transformation. A displace-
ment field or a stationary velocity field must be stored into an image file (e.g. Nifty,
Analyse, etc.). This tag must be an element of the tag <transformation>. This
tag is mandatory.

• Tag <invert> indicates if the considered transformation has to be inverted before
the fusion. The value “1” induces the transformation inversion ; the value “0” means
no inversion. This tag is optional. By default, no inversion is performed.

The type of the output transformation depends on the transformations of the list. A list
of linear transformations will be fused into a linear transformation. If the list contains at
least one displacement field, the output transformation will be a displacement field. If the
option ”–force-displacement-field” is used, the ouput transformation will be a displace-
ment field. For now on, if the list contains linear transformations and stationary velocity
fields, the computed transformation will be a displacement field. However, this will change
in the near future in order to compute a unique stationary velocity field (thanks to Marco
Lorenzi).
One should choose the output file extension according to the transformation computed.
Indeed, if the output transformation is a displacement field, only image format are sup-
ported (e.g. .nii). No checking on the file extension will be performed since the output
transformation type is easily predictable.
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3.6 Conversion of transformations

In this section, we present the conversion of a transformation of the voxel space into
a transformation of the world space, and conversely. We first introduce in Fig. 3.1 a
scheme that will be useful to give an intuition of how the conversion procedure works.
This array visually represent the projection of a point from one image to another one,
or from coordinate system to another one. On the top are represented the fixed and
the moving images and on the left hand-side are represented the voxel and the world
coordinate systems. We present here two arrows representing the projection of a point
from the voxel coordinates to the world coordinates (see Section 1.1.1). In this section,
Mfixed and Mmoving will respectively represent the projection (4×4) matrix of the fixed
and moving images.

Figure 3.1: Projection matrices from the voxel coordinates to the world coordinates.

3.6.1 Linear transformation: from voxel to world coordinates

Let Tvoxel be a linear transformation (4×4 matrix) from the fixed image to the moving
image and given in the voxel coordinates (see Fig. 3.2). The conversion of Tvoxel into
Tworld, the corresponding linear transformation in the world coordinates, is given by:

Tworld = Mmoving.Tvoxel.M
−1
fixed (3.14)

Fig. 3.3 gives a visual explanation of the conversion. This conversion is used in the regis-
tration method Baloo where the initial code returns a linear transformation such as Tvoxel.
In the original version of Baladin, the returned transformation Tvoxel is a linear transfor-
mation from the moving image to the fixed image and given in the voxel coordinates. In
this particular case, Tvoxel must be inverted before computing Tworld (from fixed to moving
image) as proposed in Eq. 3.14.
From Eq. 3.14 one trivially converts a linear transformation from world coordinates to
voxel coordinates:

Tvoxel = M−1
moving.Tworld.Mfixed (3.15)

In the case of Baladin, the final transformation Tvoxel since Baladin consider transforma-
tions from the moving image to the fixed image.

3.6.2 Displacement field: from voxel to world coordinates

The conversion of a displacement field is different from the conversion of a linear trans-
formation. Indeed, a displacement vector is assigned to each element of the field. Let
pvoxel be an index of the fixed image (point in the voxel coordinates) and let vvoxel be its
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Figure 3.2: Transformation from the fixed image to the moving image and given in the
voxel coordinates.

Figure 3.3: Conversion procedure: from voxel to world coordinates.

associated displacement vector given in voxels. Let p1 be the projection of pvoxel into the
world coordinates:

p1 = Mfixed.pvoxel (3.16)

By definition, pvoxel + vvoxel is an index in the moving image (point in the voxel coordi-
nates). Let be p2 be the projection of pvoxel + vvoxel into the world coordinates:

p2 = Mmoving. (pvoxel + vvoxel) (3.17)

Both p1 and p2 are points in the world coordinates. The displacement vector, denoted
vworld, in the world coordinates corresponding to vvoxel is simply the difference between
p2 and p1 (see Fig. 3.4):

vworld = Mmoving. (pvoxel + vvoxel)−Mfixed.pvoxel (3.18)

Figure 3.4: Conversion of a displacement field from voxel to world coordinates. Green
circles represent (from top to bottom and left to right) pvoxel, p1, and p2.
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3.7 Other useful tools

3.7.1 imageConvert

The imageConvert tool converts an image from one format to another. The format of
each image is determined by its extension. Scalar images (2D and 3D) as well as DTI (3D)
images are supported. Using some appropriate options, one can also modify the image
origin, the voxel size, and the image orientation (direction). This will affect only the image
header but not the content.

3.7.2 imageDisplayProperties

The imageConvert tool displays the properties of an input image. Scalar and vector
images (DTI) are supported. 2D and 3D images are supported. See the example below to
know what kind of information is displayed:

[ vgarcia@koch ˜ ] $ imageDisp layProper t i e s ˜/Data/T1 . n i i
Image name : / user / vgarc i a /home/Data/T1 . n i i
Image dimension : 3
Image s i z e : [ 181 , 217 , 181 ] voxe l s
P ixe l type : s c a l a r
Component number : 1
Component type : f l o a t
Component s i z e : 4 bytes
Image o r i g i n : [ 0 . 000 , 0 . 000 , 0 .000 ]
Voxel s i z e : [ 1 . 000 , 1 . 000 , 1 .000 ]
D i r e c t i on c o s i n e : [ 1 . 000 , 0 . 000 , 0 .000 ]

[ −0.000 , −1.000 , 0 .000 ]
[ −0.000 , 0 . 000 , 1 .000 ]

3.7.3 imageResize

The imageResize tool resizes an input image given either the new voxel size or the new
image size. Voxel size and image size cannot be set simultaneously. Image orientation is
preserved. Image origin may be shifted in order to perserved the borders of the image
in the real world coordinates. However, if the voxel size set does not allow to discretize
the initial volume into an integer number of voxels, the image size in units (image size in
voxels * voxel size) and the image border of the output image will be different from those
of the input image.

3.8 Things to do

3.8.1 Tensor support for Baloo and SuperBaloo

Baloo and SuperBaloo are so far the only registration methods of RPI supporting tensor
images. However, this support is not guaranteed since Olivier Commowick is still work-
ing on tensor registration. The core code of Baloo and SuperBaloo may be updated and
therefore Baloo and SuperBaloo (RPI versions) may not work after this update.
The resampling of a tensor image is not as easy as for scalar images. You usually have
to interpolate the tensor image and you also have to rotate it. So far, we use the
itk::WarpTensorImageFilter of TTK which applies a displacement field (as a vector
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image) to the tensor image. In the case of Baloo, we estimate a linear transformation. To
resample the tensor, we generate a displacement field from the linear transformation, and
then we use itk::WarpTensorImageFilter. This solution is of course not the correct way
to resample a tensor using a linear transformation. A proper function should be written
to directly use the linear transformation.

3.8.2 Improve method GetSpatialJacobian of the itk::DisplacementField-

Transform class

The GetSpatialJacobian method of the itk::DisplacementFieldTransform class com-
putes the gradient using a finite difference and considering the neighborhood along one
direction for each element of the matrix. The problem of this method is that the estima-
tion of the spatial Jacobian is incorrect and tends to be noisy. A better way to do it would
be to consider a larger neighborhood as proposed in [PFA04].

3.8.3 Improve method TransformPoint of the itk::StationaryVelocity-

FieldTransform class

The TransformPoint method of the itk::StationaryVelocityFieldTransform class
first go through all the image to estimate a value (see Xavier or Marco) and then transform
the considered point by composing several time with the velocity field. The problem of
this method is that if one uses the itk::ResampleImageFilter to resample a given image
using a stationary velocity field, the TransformPoint method will be called by every voxel
of the image to resample. This means that, for each voxel, the whole image is explored.
As a consequence, using a stationary velocity field to resample an image can take days. As
proposed in section 2.3, one should first compute a displacement field from the stationary
velocity field, and then resample the image using the displacement field.

3.8.4 Improve the multi-resolution scheme

The multi-resolution scheme used by the demons-based registration methods use a pyra-
midal approach where each dimension is divided by 2 from one resolution to another one.
One the image size and voxel size are homogeneous, this works perfectly. However, if one
consider for instance an image of size 512×256×64, it may be more interesting to consider
the following pyramidal approach:

• 512× 256× 64

• 256× 256× 64

• 128× 128× 64

• 64× 64× 64

• 32× 32× 32

The goal here is to reduce the size of the image in order to tend to have images of size as
isotrope as possible. I haven’t tried this, but if the voxels also have an isotropique size,
this makes sense.
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