/*========================================================================= Program: Visualization Toolkit Module: vtkBiQuadraticQuad.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // Thanks to Soeren Gebbert who developed this class and // integrated it into VTK 5.0. #include "vtkBiQuadraticQuad.h" #include "vtkDoubleArray.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPoints.h" #include "vtkQuad.h" #include "vtkQuadraticEdge.h" vtkStandardNewMacro(vtkBiQuadraticQuad); //------------------------------------------------------------------------------ // Construct the quad with nine points. vtkBiQuadraticQuad::vtkBiQuadraticQuad() { this->Edge = vtkQuadraticEdge::New(); this->Quad = vtkQuad::New(); this->Points->SetNumberOfPoints(9); this->PointIds->SetNumberOfIds(9); for (int i = 0; i < 9; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i, 0); } this->Scalars = vtkDoubleArray::New(); this->Scalars->SetNumberOfTuples(4); } //------------------------------------------------------------------------------ vtkBiQuadraticQuad::~vtkBiQuadraticQuad() { this->Edge->Delete(); this->Quad->Delete(); this->Scalars->Delete(); } //------------------------------------------------------------------------------ vtkCell* vtkBiQuadraticQuad::GetEdge(int edgeId) { edgeId = (edgeId < 0 ? 0 : (edgeId > 3 ? 3 : edgeId)); int p = (edgeId + 1) % 4; // load point id's this->Edge->PointIds->SetId(0, this->PointIds->GetId(edgeId)); this->Edge->PointIds->SetId(1, this->PointIds->GetId(p)); this->Edge->PointIds->SetId(2, this->PointIds->GetId(edgeId + 4)); // load coordinates this->Edge->Points->SetPoint(0, this->Points->GetPoint(edgeId)); this->Edge->Points->SetPoint(1, this->Points->GetPoint(p)); this->Edge->Points->SetPoint(2, this->Points->GetPoint(edgeId + 4)); return this->Edge; } //------------------------------------------------------------------------------ static int LinearQuads[4][4] = { { 0, 4, 8, 7 }, { 4, 1, 5, 8 }, { 8, 5, 2, 6 }, { 7, 8, 6, 3 } }; //------------------------------------------------------------------------------ int vtkBiQuadraticQuad::EvaluatePosition(const double x[3], double* closestPoint, int& subId, double pcoords[3], double& minDist2, double* weights) { double pc[3], dist2; int ignoreId, i, returnStatus = 0, status; double tempWeights[4]; double closest[3]; // four linear quads are used for (minDist2 = VTK_DOUBLE_MAX, i = 0; i < 4; i++) { this->Quad->Points->SetPoint(0, this->Points->GetPoint(LinearQuads[i][0])); this->Quad->Points->SetPoint(1, this->Points->GetPoint(LinearQuads[i][1])); this->Quad->Points->SetPoint(2, this->Points->GetPoint(LinearQuads[i][2])); this->Quad->Points->SetPoint(3, this->Points->GetPoint(LinearQuads[i][3])); status = this->Quad->EvaluatePosition(x, closest, ignoreId, pc, dist2, tempWeights); if (status != -1 && dist2 < minDist2) { returnStatus = status; minDist2 = dist2; subId = i; pcoords[0] = pc[0]; pcoords[1] = pc[1]; } } // adjust parametric coordinates if (returnStatus != -1) { if (subId == 0) { pcoords[0] /= 2.0; pcoords[1] /= 2.0; } else if (subId == 1) { pcoords[0] = 0.5 + (pcoords[0] / 2.0); pcoords[1] /= 2.0; } else if (subId == 2) { pcoords[0] = 0.5 + (pcoords[0] / 2.0); pcoords[1] = 0.5 + (pcoords[1] / 2.0); } else { pcoords[0] /= 2.0; pcoords[1] = 0.5 + (pcoords[1] / 2.0); } pcoords[2] = 0.0; if (closestPoint != nullptr) { // Compute both closestPoint and weights this->EvaluateLocation(subId, pcoords, closestPoint, weights); } else { // Compute weights only vtkBiQuadraticQuad::InterpolationFunctionsPrivate(pcoords, weights); } } return returnStatus; } //------------------------------------------------------------------------------ void vtkBiQuadraticQuad::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { int i, j; double pt[3]; vtkBiQuadraticQuad::InterpolationFunctionsPrivate(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i = 0; i < 9; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 3; j++) { x[j] += pt[j] * weights[i]; } } } //------------------------------------------------------------------------------ int vtkBiQuadraticQuad::CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) { return this->Quad->CellBoundary(subId, pcoords, pts); } //------------------------------------------------------------------------------ void vtkBiQuadraticQuad::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { // contour each linear quad separately for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { this->Quad->Points->SetPoint(j, this->Points->GetPoint(LinearQuads[i][j])); this->Quad->PointIds->SetId(j, this->PointIds->GetId(LinearQuads[i][j])); this->Scalars->SetValue(j, cellScalars->GetTuple1(LinearQuads[i][j])); } this->Quad->Contour( value, this->Scalars, locator, verts, lines, polys, inPd, outPd, inCd, cellId, outCd); } } //------------------------------------------------------------------------------ // Clip this quadratic quad using scalar value provided. Like contouring, // except that it cuts the quad to produce other quads and triangles. void vtkBiQuadraticQuad::Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { // contour each linear quad separately for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) // for each of the four vertices of the linear quad { this->Quad->Points->SetPoint(j, this->Points->GetPoint(LinearQuads[i][j])); this->Quad->PointIds->SetId(j, this->PointIds->GetId(LinearQuads[i][j])); this->Scalars->SetValue(j, cellScalars->GetTuple1(LinearQuads[i][j])); } this->Quad->Clip( value, this->Scalars, locator, polys, inPd, outPd, inCd, cellId, outCd, insideOut); } } //------------------------------------------------------------------------------ // Line-line intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int vtkBiQuadraticQuad::IntersectWithLine( const double* p1, const double* p2, double tol, double& t, double* x, double* pcoords, int& subId) { int subTest, i; subId = 0; // intersect the four linear quads for (i = 0; i < 4; i++) { this->Quad->Points->SetPoint(0, this->Points->GetPoint(LinearQuads[i][0])); this->Quad->Points->SetPoint(1, this->Points->GetPoint(LinearQuads[i][1])); this->Quad->Points->SetPoint(2, this->Points->GetPoint(LinearQuads[i][2])); this->Quad->Points->SetPoint(3, this->Points->GetPoint(LinearQuads[i][3])); if (this->Quad->IntersectWithLine(p1, p2, tol, t, x, pcoords, subTest)) { return 1; } } return 0; } //------------------------------------------------------------------------------ int vtkBiQuadraticQuad::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts) { pts->SetNumberOfPoints(24); ptIds->SetNumberOfIds(24); // First the corner vertices ptIds->SetId(0, this->PointIds->GetId(0)); ptIds->SetId(1, this->PointIds->GetId(4)); ptIds->SetId(2, this->PointIds->GetId(7)); pts->SetPoint(0, this->Points->GetPoint(0)); pts->SetPoint(1, this->Points->GetPoint(4)); pts->SetPoint(2, this->Points->GetPoint(7)); ptIds->SetId(3, this->PointIds->GetId(4)); ptIds->SetId(4, this->PointIds->GetId(1)); ptIds->SetId(5, this->PointIds->GetId(5)); pts->SetPoint(3, this->Points->GetPoint(4)); pts->SetPoint(4, this->Points->GetPoint(1)); pts->SetPoint(5, this->Points->GetPoint(5)); ptIds->SetId(6, this->PointIds->GetId(5)); ptIds->SetId(7, this->PointIds->GetId(2)); ptIds->SetId(8, this->PointIds->GetId(6)); pts->SetPoint(6, this->Points->GetPoint(5)); pts->SetPoint(7, this->Points->GetPoint(2)); pts->SetPoint(8, this->Points->GetPoint(6)); ptIds->SetId(9, this->PointIds->GetId(6)); ptIds->SetId(10, this->PointIds->GetId(3)); ptIds->SetId(11, this->PointIds->GetId(7)); pts->SetPoint(9, this->Points->GetPoint(6)); pts->SetPoint(10, this->Points->GetPoint(3)); pts->SetPoint(11, this->Points->GetPoint(7)); // Now the triangles in the middle ptIds->SetId(12, this->PointIds->GetId(4)); ptIds->SetId(13, this->PointIds->GetId(8)); ptIds->SetId(14, this->PointIds->GetId(7)); pts->SetPoint(12, this->Points->GetPoint(4)); pts->SetPoint(13, this->Points->GetPoint(8)); pts->SetPoint(14, this->Points->GetPoint(7)); ptIds->SetId(15, this->PointIds->GetId(4)); ptIds->SetId(16, this->PointIds->GetId(5)); ptIds->SetId(17, this->PointIds->GetId(8)); pts->SetPoint(15, this->Points->GetPoint(4)); pts->SetPoint(16, this->Points->GetPoint(5)); pts->SetPoint(17, this->Points->GetPoint(8)); ptIds->SetId(18, this->PointIds->GetId(5)); ptIds->SetId(19, this->PointIds->GetId(6)); ptIds->SetId(20, this->PointIds->GetId(8)); pts->SetPoint(18, this->Points->GetPoint(5)); pts->SetPoint(19, this->Points->GetPoint(6)); pts->SetPoint(20, this->Points->GetPoint(8)); ptIds->SetId(21, this->PointIds->GetId(6)); ptIds->SetId(22, this->PointIds->GetId(7)); ptIds->SetId(23, this->PointIds->GetId(8)); pts->SetPoint(21, this->Points->GetPoint(6)); pts->SetPoint(22, this->Points->GetPoint(7)); pts->SetPoint(23, this->Points->GetPoint(8)); return 1; } //------------------------------------------------------------------------------ void vtkBiQuadraticQuad::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double sum[2], p[3], weights[9]; double functionDerivs[18]; double *J[3], J0[3], J1[3], J2[3]; double *JI[3], JI0[3], JI1[3], JI2[3]; vtkBiQuadraticQuad::InterpolationFunctionsPrivate(pcoords, weights); vtkBiQuadraticQuad::InterpolationDerivsPrivate(pcoords, functionDerivs); // Compute transposed Jacobian and inverse Jacobian J[0] = J0; J[1] = J1; J[2] = J2; JI[0] = JI0; JI[1] = JI1; JI[2] = JI2; for (int k = 0; k < 3; k++) { J0[k] = J1[k] = 0.0; } for (int i = 0; i < 9; i++) { this->Points->GetPoint(i, p); for (int j = 0; j < 2; j++) { for (int k = 0; k < 3; k++) { J[j][k] += p[k] * functionDerivs[j * 9 + i]; } } } // Compute third row vector in transposed Jacobian and normalize it, so that Jacobian determinant // stays the same. vtkMath::Cross(J0, J1, J2); if (vtkMath::Normalize(J2) == 0.0 || !vtkMath::InvertMatrix(J, JI, 3)) // degenerate { for (int j = 0; j < dim; j++) { for (int i = 0; i < 3; i++) { derivs[j * dim + i] = 0.0; } } return; } // Loop over "dim" derivative values. For each set of values, // compute derivatives // in local system and then transform into modelling system. // First compute derivatives in local x'-y' coordinate system for (int j = 0; j < dim; j++) { sum[0] = sum[1] = 0.0; for (int i = 0; i < 9; i++) // loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim * i + j]; sum[1] += functionDerivs[9 + i] * values[dim * i + j]; } // dBydx = sum[0]*JI[0][0] + sum[1]*JI[0][1]; // dBydy = sum[0]*JI[1][0] + sum[1]*JI[1][1]; // Transform into global system (dot product with global axes) derivs[3 * j] = sum[0] * JI[0][0] + sum[1] * JI[0][1]; derivs[3 * j + 1] = sum[0] * JI[1][0] + sum[1] * JI[1][1]; derivs[3 * j + 2] = sum[0] * JI[2][0] + sum[1] * JI[2][1]; } } //------------------------------------------------------------------------------ // Compute interpolation functions. The first four nodes are the corner // vertices; the others are mid-edge nodes, the last one is the mid-center // node. void vtkBiQuadraticQuad::InterpolationFunctionsPrivate(const double pcoords[3], double weights[9]) { // Normally these coordinates are named r and s, but I chose x and y, // because you can easily mark and paste these functions to the // gnuplot splot function. :D double x = pcoords[0]; double y = pcoords[1]; // midedge weights weights[0] = 4.0 * (1.0 - x) * (x - 0.5) * (1.0 - y) * (y - 0.5); weights[1] = -4.0 * (x) * (x - 0.5) * (1.0 - y) * (y - 0.5); weights[2] = 4.0 * (x) * (x - 0.5) * (y) * (y - 0.5); weights[3] = -4.0 * (1.0 - x) * (x - 0.5) * (y) * (y - 0.5); // corner weights weights[4] = 8.0 * (x) * (1.0 - x) * (1.0 - y) * (0.5 - y); weights[5] = -8.0 * (x) * (0.5 - x) * (1.0 - y) * (y); weights[6] = -8.0 * (x) * (1.0 - x) * (y) * (0.5 - y); weights[7] = 8.0 * (1.0 - x) * (0.5 - x) * (1.0 - y) * (y); // surface center weight weights[8] = 16.0 * (x) * (1.0 - x) * (1.0 - y) * (y); } //------------------------------------------------------------------------------ // Derivatives in parametric space. void vtkBiQuadraticQuad::InterpolationDerivsPrivate(const double pcoords[3], double derivs[18]) { // Coordinate conversion double x = pcoords[0]; double y = pcoords[1]; // Derivatives in the x-direction // edge derivs[0] = 4.0 * (1.5 - 2.0 * x) * (1.0 - y) * (y - 0.5); derivs[1] = -4.0 * (2.0 * x - 0.5) * (1.0 - y) * (y - 0.5); derivs[2] = 4.0 * (2.0 * x - 0.5) * (y) * (y - 0.5); derivs[3] = -4.0 * (1.5 - 2.0 * x) * (y) * (y - 0.5); // midedge derivs[4] = 8.0 * (1.0 - 2.0 * x) * (1.0 - y) * (0.5 - y); derivs[5] = -8.0 * (0.5 - 2.0 * x) * (1.0 - y) * (y); derivs[6] = -8.0 * (1.0 - 2.0 * x) * (y) * (0.5 - y); derivs[7] = 8.0 * (2.0 * x - 1.5) * (1.0 - y) * (y); // center derivs[8] = 16.0 * (1.0 - 2.0 * x) * (1.0 - y) * (y); // Derivatives in the y-direction // edge derivs[9] = 4.0 * (1.0 - x) * (x - 0.5) * (1.5 - 2.0 * y); derivs[10] = -4.0 * (x) * (x - 0.5) * (1.5 - 2.0 * y); derivs[11] = 4.0 * (x) * (x - 0.5) * (2.0 * y - 0.5); derivs[12] = -4.0 * (1.0 - x) * (x - 0.5) * (2.0 * y - 0.5); // midedge derivs[13] = 8.0 * (x) * (1.0 - x) * (2.0 * y - 1.5); derivs[14] = -8.0 * (x) * (0.5 - x) * (1.0 - 2.0 * y); derivs[15] = -8.0 * (x) * (1.0 - x) * (0.5 - 2.0 * y); derivs[16] = 8.0 * (1.0 - x) * (0.5 - x) * (1.0 - 2.0 * y); // center derivs[17] = 16.0 * (x) * (1.0 - x) * (1.0 - 2.0 * y); } //------------------------------------------------------------------------------ static double vtkQQuadCellPCoords[27] = { 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.5, 0.0, 0.0, 1.0, 0.5, 0.0, 0.5, 1.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.0 }; double* vtkBiQuadraticQuad::GetParametricCoords() { return vtkQQuadCellPCoords; } //------------------------------------------------------------------------------ void vtkBiQuadraticQuad::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Edge:\n"; this->Edge->PrintSelf(os, indent.GetNextIndent()); os << indent << "Quad:\n"; this->Quad->PrintSelf(os, indent.GetNextIndent()); os << indent << "Scalars:\n"; this->Scalars->PrintSelf(os, indent.GetNextIndent()); }