/*========================================================================= Program: Visualization Toolkit Module: vtkBiQuadraticQuadraticWedge.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // Thanks to Soeren Gebbert who developed this class and // integrated it into VTK 5.0. #include "vtkBiQuadraticQuadraticWedge.h" #include "vtkBiQuadraticQuad.h" #include "vtkDoubleArray.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPoints.h" #include "vtkQuadraticEdge.h" #include "vtkQuadraticTriangle.h" #include "vtkWedge.h" #include vtkStandardNewMacro(vtkBiQuadraticQuadraticWedge); //------------------------------------------------------------------------------ // Construct the biquadratic quadratic wedge with 18 points vtkBiQuadraticQuadraticWedge::vtkBiQuadraticQuadraticWedge() { this->Points->SetNumberOfPoints(18); this->PointIds->SetNumberOfIds(18); for (int i = 0; i < 18; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i, 0); } this->Edge = vtkQuadraticEdge::New(); this->Face = vtkBiQuadraticQuad::New(); this->TriangleFace = vtkQuadraticTriangle::New(); this->Wedge = vtkWedge::New(); this->Scalars = vtkDoubleArray::New(); this->Scalars->SetNumberOfTuples(6); // Number of vertices from a linear wedge } //------------------------------------------------------------------------------ vtkBiQuadraticQuadraticWedge::~vtkBiQuadraticQuadraticWedge() { this->Edge->Delete(); this->Face->Delete(); this->TriangleFace->Delete(); this->Wedge->Delete(); this->Scalars->Delete(); } //------------------------------------------------------------------------------ // We are using 8 linear wedge static int LinearWedges[8][6] = { { 0, 6, 8, 12, 15, 17 }, { 6, 7, 8, 15, 16, 17 }, { 6, 1, 7, 15, 13, 16 }, { 8, 7, 2, 17, 16, 14 }, { 12, 15, 17, 3, 9, 11 }, { 15, 16, 17, 9, 10, 11 }, { 15, 13, 16, 9, 4, 10 }, { 17, 16, 14, 11, 10, 5 }, }; // We use 2 quadratic triangles and 3 quadratic-linear quads static constexpr vtkIdType WedgeFaces[5][9] = { { 0, 1, 2, 6, 7, 8, 0, 0, 0 }, // first quad triangle { 3, 5, 4, 11, 10, 9, 0, 0, 0 }, // second quad triangle { 0, 3, 4, 1, 12, 9, 13, 6, 15 }, // 1. biquad quad { 1, 4, 5, 2, 13, 10, 14, 7, 16 }, // 2. biquad quad { 2, 5, 3, 0, 14, 11, 12, 8, 17 }, // 3. biquad quad }; // We have 9 quadratic edges static constexpr vtkIdType WedgeEdges[9][3] = { { 0, 1, 6 }, { 1, 2, 7 }, { 2, 0, 8 }, { 3, 4, 9 }, { 4, 5, 10 }, { 5, 3, 11 }, { 0, 3, 12 }, { 1, 4, 13 }, { 2, 5, 14 }, }; //------------------------------------------------------------------------------ const vtkIdType* vtkBiQuadraticQuadraticWedge::GetEdgeArray(vtkIdType edgeId) { return WedgeEdges[edgeId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkBiQuadraticQuadraticWedge::GetFaceArray(vtkIdType faceId) { return WedgeFaces[faceId]; } //------------------------------------------------------------------------------ vtkCell* vtkBiQuadraticQuadraticWedge::GetEdge(int edgeId) { edgeId = (edgeId < 0 ? 0 : (edgeId > 8 ? 8 : edgeId)); // We have 9 quadratic edges for (int i = 0; i < 3; i++) { this->Edge->PointIds->SetId(i, this->PointIds->GetId(WedgeEdges[edgeId][i])); this->Edge->Points->SetPoint(i, this->Points->GetPoint(WedgeEdges[edgeId][i])); } return this->Edge; } //------------------------------------------------------------------------------ vtkCell* vtkBiQuadraticQuadraticWedge::GetFace(int faceId) { faceId = (faceId < 0 ? 0 : (faceId > 4 ? 4 : faceId)); // load point id's and coordinates // be careful with the last two: if (faceId < 2) { for (int i = 0; i < 6; i++) { this->TriangleFace->PointIds->SetId(i, this->PointIds->GetId(WedgeFaces[faceId][i])); this->TriangleFace->Points->SetPoint(i, this->Points->GetPoint(WedgeFaces[faceId][i])); } return this->TriangleFace; } else { for (int i = 0; i < 9; i++) { this->Face->PointIds->SetId(i, this->PointIds->GetId(WedgeFaces[faceId][i])); this->Face->Points->SetPoint(i, this->Points->GetPoint(WedgeFaces[faceId][i])); } return this->Face; } } //------------------------------------------------------------------------------ static const double VTK_DIVERGED = 1.e6; static const int VTK_WEDGE_MAX_ITERATION = 20; static const double VTK_WEDGE_CONVERGED = 1.e-03; int vtkBiQuadraticQuadraticWedge::EvaluatePosition(const double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double* weights) { int iteration, converged; double params[3]; double fcol[3], rcol[3], scol[3], tcol[3]; int i, j; double d, pt[3]; double derivs[3 * 18]; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = params[0] = params[1] = params[2] = 0.5; // enter iteration loop for (iteration = converged = 0; !converged && (iteration < VTK_WEDGE_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives vtkBiQuadraticQuadraticWedge::InterpolationFunctions(pcoords, weights); vtkBiQuadraticQuadraticWedge::InterpolationDerivs(pcoords, derivs); // calculate newton functions for (i = 0; i < 3; i++) { fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0; } for (i = 0; i < 18; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i + 18]; tcol[j] += pt[j] * derivs[i + 36]; } } for (i = 0; i < 3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements d = vtkMath::Determinant3x3(rcol, scol, tcol); if (fabs(d) < 1.e-20) { vtkDebugMacro(<< "Determinant incorrect, iteration " << iteration); return -1; } pcoords[0] = params[0] - 0.5 * vtkMath::Determinant3x3(fcol, scol, tcol) / d; pcoords[1] = params[1] - 0.5 * vtkMath::Determinant3x3(rcol, fcol, tcol) / d; pcoords[2] = params[2] - 0.5 * vtkMath::Determinant3x3(rcol, scol, fcol) / d; // check for convergence if (((fabs(pcoords[0] - params[0])) < VTK_WEDGE_CONVERGED) && ((fabs(pcoords[1] - params[1])) < VTK_WEDGE_CONVERGED) && ((fabs(pcoords[2] - params[2])) < VTK_WEDGE_CONVERGED)) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if (!converged) { return -1; } vtkBiQuadraticQuadraticWedge::InterpolationFunctions(pcoords, weights); if (pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; // inside wedge } return 1; } else { double pc[3], w[18]; if (closestPoint) { for (i = 0; i < 3; i++) // only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, static_cast(w)); dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x); } return 0; } } //------------------------------------------------------------------------------ void vtkBiQuadraticQuadraticWedge::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { double pt[3]; vtkBiQuadraticQuadraticWedge::InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (int i = 0; i < 18; i++) { this->Points->GetPoint(i, pt); for (int j = 0; j < 3; j++) { x[j] += pt[j] * weights[i]; } } } //------------------------------------------------------------------------------ int vtkBiQuadraticQuadraticWedge::CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) { return this->Wedge->CellBoundary(subId, pcoords, pts); } //------------------------------------------------------------------------------ void vtkBiQuadraticQuadraticWedge::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { // contour each linear wedge separately for (int i = 0; i < 8; i++) // for each wedge { for (int j = 0; j < 6; j++) // for each point of wedge { this->Wedge->Points->SetPoint(j, this->Points->GetPoint(LinearWedges[i][j])); this->Wedge->PointIds->SetId(j, this->PointIds->GetId(LinearWedges[i][j])); this->Scalars->SetValue(j, cellScalars->GetTuple1(LinearWedges[i][j])); } this->Wedge->Contour( value, this->Scalars, locator, verts, lines, polys, inPd, outPd, inCd, cellId, outCd); } } //------------------------------------------------------------------------------ // Clip this biquadratic wedge using scalar value provided. Like contouring, // except that it cuts the wedge to produce tetrahedra. void vtkBiQuadraticQuadraticWedge::Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* tets, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { // contour each linear wedge separately for (int i = 0; i < 8; i++) // for each wedge { for (int j = 0; j < 6; j++) // for each of the six vertices of the wedge { this->Wedge->Points->SetPoint(j, this->Points->GetPoint(LinearWedges[i][j])); this->Wedge->PointIds->SetId(j, this->PointIds->GetId(LinearWedges[i][j])); this->Scalars->SetValue(j, cellScalars->GetTuple1(LinearWedges[i][j])); } this->Wedge->Clip( value, this->Scalars, locator, tets, inPd, outPd, inCd, cellId, outCd, insideOut); } } //------------------------------------------------------------------------------ // Line-hex intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int vtkBiQuadraticQuadraticWedge::IntersectWithLine( const double* p1, const double* p2, double tol, double& t, double* x, double* pcoords, int& subId) { int intersection = 0; double tTemp; double pc[3], xTemp[3]; int faceNum; int inter; t = VTK_DOUBLE_MAX; for (faceNum = 0; faceNum < 5; faceNum++) { // We have 9 nodes on biquad face // and 6 on triangle faces if (faceNum < 2) { for (int i = 0; i < 6; i++) { this->TriangleFace->PointIds->SetId(i, this->PointIds->GetId(WedgeFaces[faceNum][i])); this->TriangleFace->Points->SetPoint(i, this->Points->GetPoint(WedgeFaces[faceNum][i])); } inter = this->TriangleFace->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId); } else { for (int i = 0; i < 9; i++) { this->Face->Points->SetPoint(i, this->Points->GetPoint(WedgeFaces[faceNum][i])); } inter = this->Face->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId); } if (inter) { intersection = 1; if (tTemp < t) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = pc[0]; break; case 1: pcoords[0] = 1.0; pcoords[1] = pc[0]; pcoords[2] = pc[1]; break; case 2: pcoords[0] = pc[0]; pcoords[1] = 0.0; pcoords[2] = pc[1]; break; case 3: pcoords[0] = pc[1]; pcoords[1] = 1.0; pcoords[2] = pc[0]; break; case 4: pcoords[0] = pc[1]; pcoords[1] = pc[0]; pcoords[2] = 0.0; break; case 5: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0; break; default: assert("check:impossible case" && 0); // reaching this line is a bug break; } } } } return intersection; } //------------------------------------------------------------------------------ int vtkBiQuadraticQuadraticWedge::Triangulate( int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts) { pts->Reset(); ptIds->Reset(); for (int i = 0; i < 8; i++) { for (int j = 0; j < 6; j++) { ptIds->InsertId(6 * i + j, this->PointIds->GetId(LinearWedges[i][j])); pts->InsertPoint(6 * i + j, this->Points->GetPoint(LinearWedges[i][j])); } } return 1; } //------------------------------------------------------------------------------ // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void vtkBiQuadraticQuadraticWedge::JacobianInverse( const double pcoords[3], double** inverse, double derivs[54]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives vtkBiQuadraticQuadraticWedge::InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i = 0; i < 3; i++) // initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for (j = 0; j < 18; j++) { this->Points->GetPoint(j, x); for (i = 0; i < 3; i++) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[18 + j]; m2[i] += x[i] * derivs[36 + j]; } } // now find the inverse if (vtkMath::InvertMatrix(m, inverse, 3) == 0) { vtkErrorMacro(<< "Jacobian inverse not found"); return; } } //------------------------------------------------------------------------------ void vtkBiQuadraticQuadraticWedge::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[3 * 18], sum[3]; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k = 0; k < dim; k++) // loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for (i = 0; i < 18; i++) // loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim * i + k]; sum[1] += functionDerivs[18 + i] * values[dim * i + k]; sum[2] += functionDerivs[36 + i] * values[dim * i + k]; } for (j = 0; j < 3; j++) // loop over derivative directions { derivs[3 * k + j] = sum[0] * jI[j][0] + sum[1] * jI[j][1] + sum[2] * jI[j][2]; } } } //------------------------------------------------------------------------------ // Compute interpolation functions for the fifteen nodes. void vtkBiQuadraticQuadraticWedge::InterpolationFunctions( const double pcoords[3], double weights[18]) { // VTK needs parametric coordinates to be between (0,1). Isoparametric // shape functions are formulated between (-1,1). Here we do a // coordinate system conversion from (0,1) to (-1,1). double x = 2 * (pcoords[0] - 0.5); double y = 2 * (pcoords[1] - 0.5); double z = 2 * (pcoords[2] - 0.5); // clang-format off // corners weights[0] =-0.25 * (x + y) * (x + y + 1) * z * (1 - z); weights[1] =-0.25 * x * (x + 1) * z * (1 - z); weights[2] =-0.25 * y * (1 + y) * z * (1 - z); weights[3] = 0.25 * (x + y) * (x + y + 1) * z * (1 + z); weights[4] = 0.25 * x * (x + 1) * z * (1 + z); weights[5] = 0.25 * y * (1 + y) * z * (1 + z); // midsides of quadratic triangles weights[6] = (x + 1) * (x + y) * 0.5 * z * (1 - z); weights[7] = -(x + 1) * (y + 1) * 0.5 * z * (1 - z); weights[8] = (y + 1) * (x + y) * 0.5 * z * (1 - z); weights[9] = -(x + 1) * (x + y) * 0.5 * z * (1 + z); weights[10]= (x + 1) * (y + 1) * 0.5 * z * (1 + z); weights[11]= -(y + 1) * (x + y) * 0.5 * z * (1 + z); // midsides of edges between the two triangles weights[12] = 0.5 * (x + y) * (x + y + 1) * (1 + z) * (1 - z); weights[13] = 0.5 * x * (x + 1) * (1 + z) * (1 - z); weights[14] = 0.5 * y * (1 + y) * (1 + z) * (1 - z); //Centerpoints of the biquadratic quads weights[15] = -(x + 1)*(x + y) * (1 + z) * (1 - z); weights[16] = (x + 1)*(y + 1) * (1 + z) * (1 - z); weights[17] = -(y + 1)*(x + y) * (1 + z) * (1 - z); // clang-format on } //------------------------------------------------------------------------------ // Derivatives in parametric space. void vtkBiQuadraticQuadraticWedge::InterpolationDerivs(const double pcoords[3], double derivs[54]) { // VTK needs parametric coordinates to be between (0,1). Isoparametric // shape functions are formulated between (-1,1). Here we do a // coordinate system conversion from (0,1) to (-1,1). double x = 2 * (pcoords[0] - 0.5); double y = 2 * (pcoords[1] - 0.5); double z = 2 * (pcoords[2] - 0.5); // clang-format off // Derivatives in x-direction // corners derivs[0] = -0.25 * (2 * x + 2 * y + 1) * z * (1 - z); derivs[1] = -0.25 * (2 * x + 1) * z * (1 - z); derivs[2] = 0; derivs[3] = 0.25 * (2 * x + 2 * y + 1) * z * (1 + z); derivs[4] = 0.25 * (2 * x + 1) * z * (1 + z); derivs[5] = 0; // midsides of quadratic triangles derivs[6] = (2 * x + y + 1) * 0.5 * z * (1 - z); derivs[7] = -(y + 1) * 0.5 * z * (1 - z); derivs[8] = (y + 1) * 0.5 * z * (1 - z); derivs[9] = -(2 * x + y + 1) * 0.5 * z * (1 + z); derivs[10] = (y + 1) * 0.5 * z * (1 + z) ; derivs[11] =-(y + 1) * 0.5 * z * (1 + z) ; // midsides of edges between the two triangles derivs[12] = 0.5 * (2 * x + 2 * y + 1) * (1 + z)*(1 - z); derivs[13] = 0.5 * (2 * x + 1) * (1 + z)*(1 - z); derivs[14] = 0; // Centerpoints of the biquadratic quads derivs[15] = -(2 * x + y + 1) * (1 + z) * (1 - z); derivs[16] = (y + 1) * (1 + z) * (1 - z); derivs[17] = -(y + 1) * (1 + z) * (1 - z); // Derivatives in y-direction // corners derivs[18] = -0.25 * (2 * y + 2 * x + 1) * z * (1 - z); derivs[19] = 0; derivs[20] = -0.25 * (2 * y + 1) * z * (1 - z); derivs[21] = 0.25 * (2 * y + 2 * x + 1) * z * (1 + z); derivs[22] = 0; derivs[23] = 0.25 * (2 * y + 1) * z * (1 + z); // midsides of quadratic triangles derivs[24] = (x + 1) * 0.5 * z * (1 - z); derivs[25] = -(x + 1) * 0.5 * z * (1 - z); derivs[26] = (2 * y + x + 1) * 0.5 * z * (1 - z); derivs[27] = -(x + 1) * 0.5 * z * (1 + z); derivs[28] = (x + 1) * 0.5 * z * (1 + z); derivs[29] = -(2 * y + x + 1) * 0.5 * z * (1 + z); // midsides of edges between the two triangles derivs[30] = 0.5 * (2 * y + 2 * x + 1) * (1 + z) * (1 - z); derivs[31] = 0; derivs[32] = 0.5 * (2 * y + 1) * (1 + z) * (1 - z); // Centerpoints of the biquadratic quads derivs[33] = -(x + 1) * (1 + z) * (1 - z); derivs[34] = (x + 1) * (1 + z) * (1 - z); derivs[35] = -(2 * y + x + 1) * (1 + z) * (1 - z); // Derivatives in z-direction // corners derivs[36] = -0.25 * (x + y) * (x + y + 1) * (1 - 2 * z); derivs[37] = -0.25 * x * (x + 1) * (1 - 2 * z); derivs[38] = -0.25 * y * (1 + y) * (1 - 2 * z); derivs[39] = 0.25 * (x + y) * (x + y + 1) * (1 + 2 * z); derivs[40] = 0.25 * x * (x + 1) * (1 + 2 * z); derivs[41] = 0.25 * y * (1 + y) * (1 + 2 * z); // midsides of quadratic triangles derivs[42] = (x + 1) * (x + y) * 0.5 * (1 - 2 * z); derivs[43] = -(x + 1) * (y + 1) * 0.5 * (1 - 2 * z); derivs[44] = (y + 1) * (x + y) * 0.5 * (1 - 2 * z); derivs[45] = -(x + 1) * (x + y) * 0.5 * (1 + 2 * z); derivs[46] = (x + 1) * (y + 1) * 0.5 * (1 + 2 * z); derivs[47] = -(y + 1) * (x + y) * 0.5 * (1 + 2 * z); // midsides of edges between the two triangles derivs[48] = 0.5 * (x + y) * (x + y + 1) * (-2 * z); derivs[49] = 0.5 * x * (x + 1) * (-2 * z); derivs[50] = 0.5 * y * (1 + y) * (-2 * z); // Centerpoints of the biquadratic quads derivs[51] = -(x + 1) * (x + y) * (-2 * z); derivs[52] = (x + 1) * (y + 1) * (-2 * z); derivs[53] = -(y + 1) * (x + y) * (-2 * z); // clang-format off // we compute derivatives in [-1; 1] but we need them in [ 0; 1] for(int i = 0; i < 54; i++) derivs[i] *= 2; } //------------------------------------------------------------------------------ static double vtkQWedgeCellPCoords[54] = { 0.0, 0.0, 0.0, // 1.0, 0.0, 0.0, // 0.0, 1.0, 0.0, // 0.0, 0.0, 1.0, // 1.0, 0.0, 1.0, // 0.0, 1.0, 1.0, // 0.5, 0.0, 0.0, // 0.5, 0.5, 0.0, // 0.0, 0.5, 0.0, // 0.5, 0.0, 1.0, // 0.5, 0.5, 1.0, // 0.0, 0.5, 1.0, // 0.0, 0.0, 0.5, // 1.0, 0.0, 0.5, // 0.0, 1.0, 0.5, // 0.5, 0.0, 0.5, // 0.5, 0.5, 0.5, // 0.0, 0.5, 0.5 // }; double *vtkBiQuadraticQuadraticWedge::GetParametricCoords() { return vtkQWedgeCellPCoords; } //------------------------------------------------------------------------------ void vtkBiQuadraticQuadraticWedge::PrintSelf(ostream & os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Edge:\n"; this->Edge->PrintSelf (os, indent.GetNextIndent ()); os << indent << "TriangleFace:\n"; this->TriangleFace->PrintSelf (os, indent.GetNextIndent ()); os << indent << "Face:\n"; this->Face->PrintSelf (os, indent.GetNextIndent ()); os << indent << "Wedge:\n"; this->Wedge->PrintSelf (os, indent.GetNextIndent ()); os << indent << "Scalars:\n"; this->Scalars->PrintSelf (os, indent.GetNextIndent ()); }