/*========================================================================= Program: Visualization Toolkit Module: vtkCoordinateFrame.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkCoordinateFrame.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkVector.h" #include "vtkVectorOperators.h" #include vtkStandardNewMacro(vtkCoordinateFrame); double vtkCoordinateFrame::EvaluateFunction(double x[3]) { using std::signbit; using std::sqrt; double val = 0.; // dw is a vector in world coordinates from the coordinate frame's origin to x. vtkVector3d dw(x[0] - this->Origin[0], x[1] - this->Origin[1], x[2] - this->Origin[2]); vtkVector3d ax(this->XAxis); vtkVector3d ay(this->YAxis); vtkVector3d az(this->ZAxis); // Transform dw into the coordinate-frame's basis: double xx = dw.Dot(ax); double yy = dw.Dot(ay); double zz = dw.Dot(az); // Compute squares of each coordinate and squared-radius from origin. double x2 = xx * xx; double y2 = yy * yy; double z2 = zz * zz; double r2 = x2 + y2 + z2; // Evaluate 2 relevant quartic spherical harmonic basis functions, Y_4,0 and Y_4,4: constexpr double c40 = 0.10578554691520431; // = 3/16.0 * std::sqrt(1. / vtkMath::Pi()); constexpr double c44 = 0.62583573544917614; // = 3/16.0 * std::sqrt(35. / vtkMath::Pi()); double Y40 = c40 * (35 * z2 * z2 - 30 * z2 * r2 + 3 * r2 * r2) / r2 / r2; double Y44 = c44 * (x2 * (x2 - 3 * y2) - y2 * (3 * x2 - y2)) / r2 / r2; // Combine the basis functions to get our coordinate-frame function: constexpr double w40 = 0.76376261582597338; // = std::sqrt(7./12.); constexpr double w44 = 0.64549722436790280; // = std::sqrt(5./12.); val = w40 * Y40 + w44 * Y44; return val; } // Evaluate planes gradient. void vtkCoordinateFrame::EvaluateGradient(double x[3], double n[3]) { // Approximate derivate. TODO: Compute analytic gradient. vtkVector3d pp(x[0], x[1], x[2]); double fxyz = this->EvaluateFunction(pp.GetData()); double fxdx = this->EvaluateFunction((pp + 1e-6 * vtkVector3d(1, 0, 0)).GetData()); double fydy = this->EvaluateFunction((pp + 1e-6 * vtkVector3d(0, 1, 0)).GetData()); double fzdz = this->EvaluateFunction((pp + 1e-6 * vtkVector3d(0, 0, 1)).GetData()); // vtkVector3d grad((fxdx - fxyz)/1e-6, (fydy - fxyz)/1e-6, (fzdz - fxyz)/1e-6); n[0] = (fxdx - fxyz) / 1e-6; n[1] = (fydy - fxyz) / 1e-6; n[2] = (fzdz - fxyz) / 1e-6; } void vtkCoordinateFrame::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Origin: " << this->Origin[0] << " " << this->Origin[1] << " " << this->Origin[2] << "\n"; os << indent << "XAxis: " << this->XAxis[0] << " " << this->XAxis[1] << " " << this->XAxis[2] << "\n"; os << indent << "YAxis: " << this->YAxis[0] << " " << this->YAxis[1] << " " << this->YAxis[2] << "\n"; os << indent << "ZAxis: " << this->ZAxis[0] << " " << this->ZAxis[1] << " " << this->ZAxis[2] << "\n"; }