/*========================================================================= Program: Visualization Toolkit Module: vtkHexagonalPrism.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .SECTION Thanks // Thanks to Philippe Guerville who developed this class.
// Thanks to Charles Pignerol (CEA-DAM, France) who ported this class under // VTK 4.
// Thanks to Jean Favre (CSCS, Switzerland) who contributed to integrate this // class in VTK.
// Please address all comments to Jean Favre (jfavre at cscs.ch). #include "vtkHexagonalPrism.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPoints.h" #include "vtkPolygon.h" #include "vtkQuad.h" #include #include vtkStandardNewMacro(vtkHexagonalPrism); static const double VTK_DIVERGED = 1.e6; // You can recompute the value by doing: // const double a = sqrt(3.0)/4.0 + 0.5; #define EXPRA 0.933012701892219298 // You can recompute the value by doing: // const double b = 0.5 - sqrt(3.0)/4.0; // Thus EXPRA + EXPRB = 1.0 #define EXPRB 0.066987298107780702 //------------------------------------------------------------------------------ // Construct the prism with twelve points. vtkHexagonalPrism::vtkHexagonalPrism() { int i; this->Points->SetNumberOfPoints(12); this->PointIds->SetNumberOfIds(12); for (i = 0; i < 12; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i, 0); } this->Line = vtkLine::New(); this->Quad = vtkQuad::New(); this->Polygon = vtkPolygon::New(); this->Polygon->PointIds->SetNumberOfIds(6); this->Polygon->Points->SetNumberOfPoints(6); for (i = 0; i < 6; i++) { this->Polygon->Points->SetPoint(i, 0.0, 0.0, 0.0); this->Polygon->PointIds->SetId(i, 0); } } //------------------------------------------------------------------------------ vtkHexagonalPrism::~vtkHexagonalPrism() { this->Line->Delete(); this->Quad->Delete(); this->Polygon->Delete(); } // Method to calculate parametric coordinates in an eight noded // linear hexahedron element from global coordinates. // static const int VTK_HEX_MAX_ITERATION = 10; static const double VTK_HEX_CONVERGED = 1.e-03; //------------------------------------------------------------------------------ int vtkHexagonalPrism::EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) { int iteration, converged; double params[3]; double fcol[3], rcol[3], scol[3], tcol[3]; int i, j; double d, pt[3]; double derivs[36]; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = params[0] = params[1] = params[2] = 0.5; // enter iteration loop for (iteration = converged = 0; !converged && (iteration < VTK_HEX_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives vtkHexagonalPrism::InterpolationFunctions(pcoords, weights); vtkHexagonalPrism::InterpolationDerivs(pcoords, derivs); // calculate newton functions for (i = 0; i < 3; i++) { fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0; } for (i = 0; i < 12; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i + 12]; tcol[j] += pt[j] * derivs[i + 24]; } } for (i = 0; i < 3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements d = vtkMath::Determinant3x3(rcol, scol, tcol); if (fabs(d) < 1.e-20) { vtkDebugMacro(<< "Determinant incorrect, iteration " << iteration); return -1; } pcoords[0] = params[0] - vtkMath::Determinant3x3(fcol, scol, tcol) / d; pcoords[1] = params[1] - vtkMath::Determinant3x3(rcol, fcol, tcol) / d; pcoords[2] = params[2] - vtkMath::Determinant3x3(rcol, scol, fcol) / d; // check for convergence if (((fabs(pcoords[0] - params[0])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[1] - params[1])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[2] - params[2])) < VTK_HEX_CONVERGED)) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if (!converged) { return -1; } vtkHexagonalPrism::InterpolationFunctions(pcoords, weights); if (pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; // inside hexahedron } return 1; } else { double pc[3], w[12]; if (closestPoint) { for (i = 0; i < 3; i++) // only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, static_cast(w)); dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x); } return 0; } } //------------------------------------------------------------------------------ // // Compute iso-parametric interpolation functions // void vtkHexagonalPrism::InterpolationFunctions(const double pcoords[3], double sf[12]) { double r, s, t; r = pcoords[0]; s = pcoords[1]; t = pcoords[2]; const double a = EXPRA; const double b = EXPRB; // clang-format off // First hexagon sf[0] = -16./3. * (r - a ) * (r - b) * (s - 1.0 ) * (t - 1.0); sf[1] = 16./3. * (r - 0.5) * (r - b) * (s - 0.75) * (t - 1.0); sf[2] = -16./3. * (r - 0.5) * (r - b) * (s - 0.25) * (t - 1.0); sf[3] = 16./3. * (r - a ) * (r - b) * (s - 0.0 ) * (t - 1.0); sf[4] = -16./3. * (r - 0.5) * (r - a) * (s - 0.25) * (t - 1.0); sf[5] = 16./3. * (r - 0.5) * (r - a) * (s - 0.75) * (t - 1.0); // Second hexagon sf[6] = 16./3. * (r - a ) * (r - b) * (s - 1.0 ) * (t - 0.0); sf[7] = -16./3. * (r - 0.5) * (r - b) * (s - 0.75) * (t - 0.0); sf[8] = 16./3. * (r - 0.5) * (r - b) * (s - 0.25) * (t - 0.0); sf[9] = -16./3. * (r - a ) * (r - b) * (s - 0.0 ) * (t - 0.0); sf[10] = 16./3. * (r - 0.5) * (r - a) * (s - 0.25) * (t - 0.0); sf[11] = -16./3. * (r - 0.5) * (r - a) * (s - 0.75) * (t - 0.0); // clang-format on } //------------------------------------------------------------------------------ void vtkHexagonalPrism::InterpolationDerivs(const double pcoords[3], double derivs[36]) { double r, s, t; r = pcoords[0]; s = pcoords[1]; t = pcoords[2]; const double a = EXPRA; const double b = EXPRB; // note: a+b=1.0 // clang-format off // r-derivatives // First hexagon derivs[0] = -16./3. * ( 2 * r - 1.0) * (s - 1.0 ) * (t - 1.0); derivs[1] = 16./3. * ( 2 * r - b - 0.5) * (s - 0.75) * (t - 1.0); derivs[2] = -16./3. * ( 2 * r - b - 0.5) * (s - 0.25) * (t - 1.0); derivs[3] = 16./3. * ( 2 * r - 1.0) * (s - 0.0 ) * (t - 1.0); derivs[4] = -16./3. * ( 2 * r - a - 0.5) * (s - 0.25) * (t - 1.0); derivs[5] = 16./3. * ( 2 * r - a - 0.5) * (s - 0.75) * (t - 1.0); // Second hexagon derivs[6] = 16./3. * ( 2 * r - 1.0) * (s - 1.0 ) * (t - 0.0); derivs[7] = -16./3. * ( 2 * r - b - 0.5) * (s - 0.75) * (t - 0.0); derivs[8] = 16./3. * ( 2 * r - b - 0.5) * (s - 0.25) * (t - 0.0); derivs[9] = -16./3. * ( 2 * r - 1.0) * (s - 0.0 ) * (t - 0.0); derivs[10] = 16./3. * ( 2 * r - a - 0.5) * (s - 0.25) * (t - 0.0); derivs[11] = -16./3. * ( 2 * r - a - 0.5) * (s - 0.75) * (t - 0.0); // s-derivatives // First hexagon derivs[12] = -16./3. * (r - a ) * (r - b) * (t - 1.0); derivs[13] = 16./3. * (r - 0.5) * (r - b) * (t - 1.0); derivs[14] = -16./3. * (r - 0.5) * (r - b) * (t - 1.0); derivs[15] = 16./3. * (r - a ) * (r - b) * (t - 1.0); derivs[16] = -16./3. * (r - 0.5) * (r - a) * (t - 1.0); derivs[17] = 16./3. * (r - 0.5) * (r - a) * (t - 1.0); // Second hexagon derivs[18] = 16./3. * (r - a ) * (r - b) * (t - 0.0); derivs[19] = -16./3. * (r - 0.5) * (r - b) * (t - 0.0); derivs[20] = 16./3. * (r - 0.5) * (r - b) * (t - 0.0); derivs[21] = -16./3. * (r - a ) * (r - b) * (t - 0.0); derivs[22] = 16./3. * (r - 0.5) * (r - a) * (t - 0.0); derivs[23] = -16./3. * (r - 0.5) * (r - a) * (t - 0.0); // t-derivatives // First hexagon derivs[24] = -16./3. * (r - a ) * (r - b) * (s - 1.0 ); derivs[25] = 16./3. * (r - 0.5) * (r - b) * (s - 0.75); derivs[26] = -16./3. * (r - 0.5) * (r - b) * (s - 0.25); derivs[27] = 16./3. * (r - a ) * (r - b) * (s - 0.0 ); derivs[28] = -16./3. * (r - 0.5) * (r - a) * (s - 0.25); derivs[29] = 16./3. * (r - 0.5) * (r - a) * (s - 0.75); // Second hexagon derivs[30] = 16./3. * (r - a ) * (r - b) * (s - 1.0 ); derivs[31] = -16./3. * (r - 0.5) * (r - b) * (s - 0.75); derivs[32] = 16./3. * (r - 0.5) * (r - b) * (s - 0.25); derivs[33] = -16./3. * (r - a ) * (r - b) * (s - 0.0 ); derivs[34] = 16./3. * (r - 0.5) * (r - a) * (s - 0.25); derivs[35] = -16./3. * (r - 0.5) * (r - a) * (s - 0.75); // clang-format on } //------------------------------------------------------------------------------ void vtkHexagonalPrism::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { int i, j; double pt[3]; this->InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i = 0; i < 12; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 3; j++) { x[j] += pt[j] * weights[i]; } } } namespace { // // Hexagonal prism topology: // // 4_____3 // /\ /\. // /10\___/9 \. // / / \ \. // 5/___/11 8\___\2 // \ \ / / // \ \___/ / // \ 6/ \7 / // \/_____\/ // 0 1 constexpr vtkIdType edges[vtkHexagonalPrism::NumberOfEdges][2] = { { 0, 1 }, // 0 { 1, 2 }, // 1 { 2, 3 }, // 2 { 3, 4 }, // 3 { 4, 5 }, // 4 { 5, 0 }, // 5 { 6, 7 }, // 6 { 7, 8 }, // 7 { 8, 9 }, // 8 { 9, 10 }, // 9 { 10, 11 }, // 10 { 11, 6 }, // 11 { 0, 6 }, // 12 { 1, 7 }, // 13 { 2, 8 }, // 14 { 3, 9 }, // 15 { 4, 10 }, // 16 { 5, 11 }, // 17 }; constexpr vtkIdType faces[vtkHexagonalPrism::NumberOfFaces] [vtkHexagonalPrism::MaximumFaceSize + 1] = { { 0, 5, 4, 3, 2, 1, -1 }, // 0 { 6, 7, 8, 9, 10, 11, -1 }, // 1 { 0, 1, 7, 6, -1, -1, -1 }, // 2 { 1, 2, 8, 7, -1, -1, -1 }, // 3 { 2, 3, 9, 8, -1, -1, -1 }, // 4 { 3, 4, 10, 9, -1, -1, -1 }, // 5 { 4, 5, 11, 10, -1, -1, -1 }, // 6 { 5, 0, 6, 11, -1, -1, -1 }, // 7 }; constexpr vtkIdType edgeToAdjacentFaces[vtkHexagonalPrism::NumberOfEdges][2] = { { 0, 2 }, // 0 { 0, 3 }, // 1 { 0, 4 }, // 2 { 0, 5 }, // 3 { 0, 6 }, // 4 { 0, 7 }, // 5 { 1, 2 }, // 6 { 1, 3 }, // 7 { 1, 4 }, // 8 { 1, 5 }, // 9 { 1, 6 }, // 10 { 1, 7 }, // 11 { 2, 7 }, // 12 { 2, 3 }, // 13 { 3, 4 }, // 14 { 4, 5 }, // 15 { 5, 6 }, // 16 { 6, 7 }, // 17 }; constexpr vtkIdType faceToAdjacentFaces[vtkHexagonalPrism::NumberOfFaces] [vtkHexagonalPrism::MaximumFaceSize] = { { 7, 6, 5, 4, 3, 2 }, // 0 { 2, 3, 4, 5, 6, 7 }, // 1 { 0, 3, 1, 7, -1, -1 }, // 2 { 0, 4, 1, 2, -1, -1 }, // 3 { 0, 5, 1, 3, -1, -1 }, // 4 { 0, 6, 1, 4, -1, -1 }, // 5 { 0, 7, 1, 5, -1, -1 }, // 6 { 0, 2, 1, 6, -1, -1 }, // 7 }; constexpr vtkIdType pointToIncidentEdges[vtkHexagonalPrism::NumberOfPoints] [vtkHexagonalPrism::MaximumValence] = { { 0, 12, 5 }, // 0 { 0, 1, 13 }, // 1 { 1, 2, 14 }, // 2 { 2, 3, 15 }, // 3 { 3, 4, 16 }, // 4 { 4, 5, 17 }, // 5 { 6, 11, 12 }, // 6 { 6, 13, 7 }, // 7 { 7, 14, 8 }, // 8 { 8, 15, 9 }, // 9 { 9, 16, 10 }, // 10 { 10, 17, 11 }, // 11 }; constexpr vtkIdType pointToIncidentFaces[vtkHexagonalPrism::NumberOfPoints] [vtkHexagonalPrism::MaximumValence] = { { 2, 7, 0 }, // 0 { 0, 3, 2 }, // 1 { 0, 4, 3 }, // 2 { 0, 5, 4 }, // 3 { 0, 6, 5 }, // 4 { 0, 7, 6 }, // 5 { 1, 7, 2 }, // 6 { 2, 3, 1 }, // 7 { 3, 4, 1 }, // 8 { 4, 5, 1 }, // 9 { 5, 6, 1 }, // 10 { 6, 7, 1 }, // 11 }; constexpr vtkIdType pointToOneRingPoints[vtkHexagonalPrism::NumberOfPoints] [vtkHexagonalPrism::MaximumValence] = { { 1, 6, 5 }, // 0 { 0, 2, 7 }, // 1 { 1, 3, 8 }, // 2 { 2, 4, 9 }, // 3 { 3, 5, 10 }, // 4 { 4, 0, 11 }, // 5 { 7, 11, 0 }, // 6 { 6, 1, 8 }, // 7 { 7, 2, 9 }, // 8 { 8, 3, 10 }, // 9 { 9, 4, 11 }, // 10 { 10, 5, 6 }, // 11 }; constexpr vtkIdType numberOfPointsInFace[vtkHexagonalPrism::NumberOfFaces] = { 6, // 0 6, // 1 4, // 2 4, // 3 4, // 4 4, // 5 4, // 6 4 // 7 }; } //------------------------------------------------------------------------------ bool vtkHexagonalPrism::GetCentroid(double centroid[3]) const { return vtkHexagonalPrism::ComputeCentroid(this->Points, nullptr, centroid); } //------------------------------------------------------------------------------ bool vtkHexagonalPrism::ComputeCentroid( vtkPoints* points, const vtkIdType* pointIds, double centroid[3]) { double p[3]; if (!pointIds) { vtkPolygon::ComputeCentroid(points, numberOfPointsInFace[0], faces[0], centroid); vtkPolygon::ComputeCentroid(points, numberOfPointsInFace[1], faces[1], p); } else { vtkIdType facePointsIds[6] = { pointIds[faces[0][0]], pointIds[faces[0][1]], pointIds[faces[0][2]], pointIds[faces[0][3]], pointIds[faces[0][4]], pointIds[faces[0][5]] }; vtkPolygon::ComputeCentroid(points, numberOfPointsInFace[0], facePointsIds, centroid); facePointsIds[0] = pointIds[faces[1][0]]; facePointsIds[1] = pointIds[faces[1][1]]; facePointsIds[2] = pointIds[faces[1][2]]; facePointsIds[3] = pointIds[faces[1][3]]; facePointsIds[4] = pointIds[faces[1][4]]; facePointsIds[5] = pointIds[faces[1][5]]; vtkPolygon::ComputeCentroid(points, numberOfPointsInFace[1], facePointsIds, p); } centroid[0] += p[0]; centroid[1] += p[1]; centroid[2] += p[2]; centroid[0] *= 0.5; centroid[1] *= 0.5; centroid[2] *= 0.5; return true; } //------------------------------------------------------------------------------ bool vtkHexagonalPrism::IsInsideOut() { double n0[3], n1[3]; vtkPolygon::ComputeNormal(this->Points, numberOfPointsInFace[0], faces[0], n0); vtkPolygon::ComputeNormal(this->Points, numberOfPointsInFace[1], faces[1], n1); return vtkMath::Dot(n0, n1) > 0.0; } //------------------------------------------------------------------------------ // Returns the closest face to the point specified. Closeness is measured // parametrically. int vtkHexagonalPrism::CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) { // load coordinates double* points = this->GetParametricCoords(); for (int i = 0; i < 6; i++) { this->Polygon->PointIds->SetId(i, i); this->Polygon->Points->SetPoint(i, &points[3 * i]); } this->Polygon->CellBoundary(subId, pcoords, pts); int min = vtkMath::Min(pts->GetId(0), pts->GetId(1)); int max = vtkMath::Max(pts->GetId(0), pts->GetId(1)); // Base on the edge find the quad that correspond: int index; if ((index = (max - min)) > 1) { index = 7; } else { index += min + 1; } double a[3], b[3], u[3], v[3]; this->Polygon->Points->GetPoint(pts->GetId(0), a); this->Polygon->Points->GetPoint(pts->GetId(1), b); u[0] = b[0] - a[0]; u[1] = b[1] - a[1]; v[0] = pcoords[0] - a[0]; v[1] = pcoords[1] - a[1]; double dot = vtkMath::Dot2D(v, u); double uNorm = vtkMath::Norm2D(u); if (uNorm != 0.0) { dot /= uNorm; } dot = (v[0] * v[0] + v[1] * v[1]) - dot * dot; // mathematically dot must be >= zero but, surprise surprise, it can actually // be negative if (dot > 0) { dot = sqrt(dot); } else { dot = 0; } const vtkIdType* verts; if (pcoords[2] < 0.5) { // could be closer to face 1 // compare that distance to the distance to the quad. if (dot < pcoords[2]) { // We are closer to the quad face verts = faces[index]; for (int i = 0; i < 4; i++) { pts->InsertId(i, verts[i]); } } else { // we are closer to the hexa face 1 for (int i = 0; i < 6; i++) { pts->InsertId(i, faces[0][i]); } } } else { // could be closer to face 2 // compare that distance to the distance to the quad. if (dot < (1. - pcoords[2])) { // We are closer to the quad face verts = faces[index]; for (int i = 0; i < 4; i++) { pts->InsertId(i, verts[i]); } } else { // we are closer to the hexa face 2 for (int i = 0; i < 6; i++) { pts->InsertId(i, faces[1][i]); } } } // determine whether point is inside of hexagon if (pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 || pcoords[2] < 0.0 || pcoords[2] > 1.0) { return 0; } else { return 1; } } //------------------------------------------------------------------------------ const vtkIdType* vtkHexagonalPrism::GetEdgeToAdjacentFacesArray(vtkIdType edgeId) { assert(edgeId < vtkHexagonalPrism::NumberOfEdges && "edgeId too large"); return edgeToAdjacentFaces[edgeId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexagonalPrism::GetFaceToAdjacentFacesArray(vtkIdType faceId) { assert(faceId < vtkHexagonalPrism::NumberOfFaces && "faceId too large"); return faceToAdjacentFaces[faceId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexagonalPrism::GetPointToIncidentEdgesArray(vtkIdType pointId) { assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large"); return pointToIncidentEdges[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexagonalPrism::GetPointToIncidentFacesArray(vtkIdType pointId) { assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large"); return pointToIncidentFaces[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexagonalPrism::GetPointToOneRingPointsArray(vtkIdType pointId) { assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large"); return pointToOneRingPoints[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexagonalPrism::GetEdgeArray(vtkIdType edgeId) { assert(edgeId < vtkHexagonalPrism::NumberOfEdges && "edgeId too large"); return edges[edgeId]; } //------------------------------------------------------------------------------ vtkCell* vtkHexagonalPrism::GetEdge(int edgeId) { const vtkIdType* verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1, this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1, this->Points->GetPoint(verts[1])); return this->Line; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexagonalPrism::GetFaceArray(vtkIdType faceId) { assert(faceId < vtkHexagonalPrism::NumberOfFaces && "faceId too large"); return faces[faceId]; } //------------------------------------------------------------------------------ vtkCell* vtkHexagonalPrism::GetFace(int faceId) { const vtkIdType* verts; verts = faces[faceId]; if (verts[4] != -1) // polys cell { // load point id's this->Polygon->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Polygon->PointIds->SetId(1, this->PointIds->GetId(verts[1])); this->Polygon->PointIds->SetId(2, this->PointIds->GetId(verts[2])); this->Polygon->PointIds->SetId(3, this->PointIds->GetId(verts[3])); this->Polygon->PointIds->SetId(4, this->PointIds->GetId(verts[4])); this->Polygon->PointIds->SetId(5, this->PointIds->GetId(verts[5])); // load coordinates this->Polygon->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Polygon->Points->SetPoint(1, this->Points->GetPoint(verts[1])); this->Polygon->Points->SetPoint(2, this->Points->GetPoint(verts[2])); this->Polygon->Points->SetPoint(3, this->Points->GetPoint(verts[3])); this->Polygon->Points->SetPoint(4, this->Points->GetPoint(verts[4])); this->Polygon->Points->SetPoint(5, this->Points->GetPoint(verts[5])); return this->Polygon; } else { // load point id's this->Quad->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Quad->PointIds->SetId(1, this->PointIds->GetId(verts[1])); this->Quad->PointIds->SetId(2, this->PointIds->GetId(verts[2])); this->Quad->PointIds->SetId(3, this->PointIds->GetId(verts[3])); // load coordinates this->Quad->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Quad->Points->SetPoint(1, this->Points->GetPoint(verts[1])); this->Quad->Points->SetPoint(2, this->Points->GetPoint(verts[2])); this->Quad->Points->SetPoint(3, this->Points->GetPoint(verts[3])); return this->Quad; } } //------------------------------------------------------------------------------ // // Intersect prism faces against line. Each prism face is a quadrilateral. // int vtkHexagonalPrism::IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { int intersection = 0; double pt1[3], pt2[3], pt3[3], pt4[3], pt5[3], pt6[3]; double tTemp; double pc[3], xTemp[3], dist2, weights[12]; int faceNum; t = VTK_DOUBLE_MAX; // first intersect the penta faces for (faceNum = 0; faceNum < 2; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Points->GetPoint(faces[faceNum][3], pt4); this->Points->GetPoint(faces[faceNum][4], pt5); this->Points->GetPoint(faces[faceNum][5], pt6); this->Quad->Points->SetPoint(0, pt1); this->Quad->Points->SetPoint(1, pt2); this->Quad->Points->SetPoint(2, pt3); this->Quad->Points->SetPoint(3, pt4); intersection = this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId); if (!intersection) { this->Quad->Points->SetPoint(0, pt4); this->Quad->Points->SetPoint(1, pt5); this->Quad->Points->SetPoint(2, pt6); this->Quad->Points->SetPoint(3, pt1); intersection = this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId); } if (intersection) { intersection = 1; if (tTemp < t) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 1: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0; break; } } } } // now intersect the quad faces for (faceNum = 2; faceNum < 8; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Points->GetPoint(faces[faceNum][3], pt4); this->Quad->Points->SetPoint(0, pt1); this->Quad->Points->SetPoint(1, pt2); this->Quad->Points->SetPoint(2, pt3); this->Quad->Points->SetPoint(3, pt4); if (this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId)) { intersection = 1; if (tTemp < t) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; this->EvaluatePosition(x, xTemp, subId, pcoords, dist2, weights); } } } return intersection; } //------------------------------------------------------------------------------ int vtkHexagonalPrism::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts) { ptIds->Reset(); pts->Reset(); int i, p[4]; // Create 10 tetrahedron. This might not be the minimum, but it is a simple solution. // The Hexagonal Prism is divided here in two mirrored hexaedra. For the second hexaedron, // 2 points of each tetra are swapped in ordered to get a positive Jacobian. p[0] = 0; p[1] = 1; p[2] = 3; p[3] = 6; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 6; p[2] = 7; p[3] = 8; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 6; p[2] = 8; p[3] = 3; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 3; p[2] = 8; p[3] = 2; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 3; p[1] = 8; p[2] = 9; p[3] = 6; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 5; p[3] = 3; p[2] = 6; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 5; p[1] = 6; p[3] = 11; p[2] = 10; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 5; p[1] = 6; p[3] = 10; p[2] = 3; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 5; p[1] = 3; p[3] = 10; p[2] = 4; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 3; p[1] = 10; p[3] = 9; p[2] = 6; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } return 1; } //------------------------------------------------------------------------------ // // Compute derivatives in x-y-z directions. Use chain rule in combination // with interpolation function derivatives. // void vtkHexagonalPrism::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[36], sum[3], value; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k = 0; k < dim; k++) // loop over values per point { sum[0] = sum[1] = sum[2] = 0.0; for (i = 0; i < 12; i++) // loop over interp. function derivatives { value = values[dim * i + k]; sum[0] += functionDerivs[i] * value; sum[1] += functionDerivs[12 + i] * value; sum[2] += functionDerivs[24 + i] * value; } for (j = 0; j < 3; j++) // loop over derivative directions { derivs[3 * k + j] = sum[0] * jI[j][0] + sum[1] * jI[j][1] + sum[2] * jI[j][2]; } } } //------------------------------------------------------------------------------ // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void vtkHexagonalPrism::JacobianInverse( const double pcoords[3], double** inverse, double derivs[36]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i = 0; i < 3; i++) // initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for (j = 0; j < 12; j++) { this->Points->GetPoint(j, x); for (i = 0; i < 3; i++) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[12 + j]; m2[i] += x[i] * derivs[24 + j]; } } // now find the inverse if (vtkMath::InvertMatrix(m, inverse, 3) == 0) { vtkErrorMacro(<< "Jacobian inverse not found"); return; } } //------------------------------------------------------------------------------ vtkIdType vtkHexagonalPrism::GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) { assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large"); pts = pointToOneRingPoints[pointId]; return vtkHexagonalPrism::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkHexagonalPrism::GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) { assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large"); faceIds = pointToIncidentFaces[pointId]; return vtkHexagonalPrism::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkHexagonalPrism::GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) { assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large"); edgeIds = pointToIncidentEdges[pointId]; return vtkHexagonalPrism::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkHexagonalPrism::GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) { assert(faceId < vtkHexagonalPrism::NumberOfFaces && "faceId too large"); faceIds = faceToAdjacentFaces[faceId]; return numberOfPointsInFace[faceId]; } //------------------------------------------------------------------------------ void vtkHexagonalPrism::GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) { assert(edgeId < vtkHexagonalPrism::NumberOfEdges && "edgeId too large"); pts = edgeToAdjacentFaces[edgeId]; } //------------------------------------------------------------------------------ void vtkHexagonalPrism::GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) { assert(edgeId < vtkHexagonalPrism::NumberOfEdges && "edgeId too large"); pts = this->GetEdgeArray(edgeId); } //------------------------------------------------------------------------------ vtkIdType vtkHexagonalPrism::GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) { assert(faceId < vtkHexagonalPrism::NumberOfFaces && "faceId too large"); pts = this->GetFaceArray(faceId); return numberOfPointsInFace[faceId]; } static double vtkHexagonalPrismCellPCoords[36] = { 0.5, 0.0, 0.0, // EXPRA, 0.25, 0.0, // EXPRA, 0.75, 0.0, // 0.5, 1.0, 0.0, // EXPRB, 0.75, 0.0, // EXPRB, 0.25, 0.0, // 0.5, 0.0, 1.0, // EXPRA, 0.25, 1.0, // EXPRA, 0.75, 1.0, // 0.5, 1.0, 1.0, // EXPRB, 0.75, 1.0, // EXPRB, 0.25, 1.0, // }; //------------------------------------------------------------------------------ double* vtkHexagonalPrism::GetParametricCoords() { return vtkHexagonalPrismCellPCoords; } //------------------------------------------------------------------------------ void vtkHexagonalPrism::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Line:\n"; this->Line->PrintSelf(os, indent.GetNextIndent()); os << indent << "Quad:\n"; this->Quad->PrintSelf(os, indent.GetNextIndent()); os << indent << "Polygon:\n"; this->Polygon->PrintSelf(os, indent.GetNextIndent()); }