/*=========================================================================
Program: Visualization Toolkit
Module: vtkHexagonalPrism.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .SECTION Thanks
// Thanks to Philippe Guerville who developed this class.
// Thanks to Charles Pignerol (CEA-DAM, France) who ported this class under
// VTK 4.
// Thanks to Jean Favre (CSCS, Switzerland) who contributed to integrate this
// class in VTK.
// Please address all comments to Jean Favre (jfavre at cscs.ch).
#include "vtkHexagonalPrism.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPoints.h"
#include "vtkPolygon.h"
#include "vtkQuad.h"
#include
#include
vtkStandardNewMacro(vtkHexagonalPrism);
static const double VTK_DIVERGED = 1.e6;
// You can recompute the value by doing:
// const double a = sqrt(3.0)/4.0 + 0.5;
#define EXPRA 0.933012701892219298
// You can recompute the value by doing:
// const double b = 0.5 - sqrt(3.0)/4.0;
// Thus EXPRA + EXPRB = 1.0
#define EXPRB 0.066987298107780702
//------------------------------------------------------------------------------
// Construct the prism with twelve points.
vtkHexagonalPrism::vtkHexagonalPrism()
{
int i;
this->Points->SetNumberOfPoints(12);
this->PointIds->SetNumberOfIds(12);
for (i = 0; i < 12; i++)
{
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->PointIds->SetId(i, 0);
}
this->Line = vtkLine::New();
this->Quad = vtkQuad::New();
this->Polygon = vtkPolygon::New();
this->Polygon->PointIds->SetNumberOfIds(6);
this->Polygon->Points->SetNumberOfPoints(6);
for (i = 0; i < 6; i++)
{
this->Polygon->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->Polygon->PointIds->SetId(i, 0);
}
}
//------------------------------------------------------------------------------
vtkHexagonalPrism::~vtkHexagonalPrism()
{
this->Line->Delete();
this->Quad->Delete();
this->Polygon->Delete();
}
// Method to calculate parametric coordinates in an eight noded
// linear hexahedron element from global coordinates.
//
static const int VTK_HEX_MAX_ITERATION = 10;
static const double VTK_HEX_CONVERGED = 1.e-03;
//------------------------------------------------------------------------------
int vtkHexagonalPrism::EvaluatePosition(const double x[3], double closestPoint[3], int& subId,
double pcoords[3], double& dist2, double weights[])
{
int iteration, converged;
double params[3];
double fcol[3], rcol[3], scol[3], tcol[3];
int i, j;
double d, pt[3];
double derivs[36];
// set initial position for Newton's method
subId = 0;
pcoords[0] = pcoords[1] = pcoords[2] = params[0] = params[1] = params[2] = 0.5;
// enter iteration loop
for (iteration = converged = 0; !converged && (iteration < VTK_HEX_MAX_ITERATION); iteration++)
{
// calculate element interpolation functions and derivatives
vtkHexagonalPrism::InterpolationFunctions(pcoords, weights);
vtkHexagonalPrism::InterpolationDerivs(pcoords, derivs);
// calculate newton functions
for (i = 0; i < 3; i++)
{
fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0;
}
for (i = 0; i < 12; i++)
{
this->Points->GetPoint(i, pt);
for (j = 0; j < 3; j++)
{
fcol[j] += pt[j] * weights[i];
rcol[j] += pt[j] * derivs[i];
scol[j] += pt[j] * derivs[i + 12];
tcol[j] += pt[j] * derivs[i + 24];
}
}
for (i = 0; i < 3; i++)
{
fcol[i] -= x[i];
}
// compute determinants and generate improvements
d = vtkMath::Determinant3x3(rcol, scol, tcol);
if (fabs(d) < 1.e-20)
{
vtkDebugMacro(<< "Determinant incorrect, iteration " << iteration);
return -1;
}
pcoords[0] = params[0] - vtkMath::Determinant3x3(fcol, scol, tcol) / d;
pcoords[1] = params[1] - vtkMath::Determinant3x3(rcol, fcol, tcol) / d;
pcoords[2] = params[2] - vtkMath::Determinant3x3(rcol, scol, fcol) / d;
// check for convergence
if (((fabs(pcoords[0] - params[0])) < VTK_HEX_CONVERGED) &&
((fabs(pcoords[1] - params[1])) < VTK_HEX_CONVERGED) &&
((fabs(pcoords[2] - params[2])) < VTK_HEX_CONVERGED))
{
converged = 1;
}
// Test for bad divergence (S.Hirschberg 11.12.2001)
else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) ||
(fabs(pcoords[2]) > VTK_DIVERGED))
{
return -1;
}
// if not converged, repeat
else
{
params[0] = pcoords[0];
params[1] = pcoords[1];
params[2] = pcoords[2];
}
}
// if not converged, set the parametric coordinates to arbitrary values
// outside of element
if (!converged)
{
return -1;
}
vtkHexagonalPrism::InterpolationFunctions(pcoords, weights);
if (pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 &&
pcoords[2] >= -0.001 && pcoords[2] <= 1.001)
{
if (closestPoint)
{
closestPoint[0] = x[0];
closestPoint[1] = x[1];
closestPoint[2] = x[2];
dist2 = 0.0; // inside hexahedron
}
return 1;
}
else
{
double pc[3], w[12];
if (closestPoint)
{
for (i = 0; i < 3; i++) // only approximate, not really true for warped hexa
{
if (pcoords[i] < 0.0)
{
pc[i] = 0.0;
}
else if (pcoords[i] > 1.0)
{
pc[i] = 1.0;
}
else
{
pc[i] = pcoords[i];
}
}
this->EvaluateLocation(subId, pc, closestPoint, static_cast(w));
dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x);
}
return 0;
}
}
//------------------------------------------------------------------------------
//
// Compute iso-parametric interpolation functions
//
void vtkHexagonalPrism::InterpolationFunctions(const double pcoords[3], double sf[12])
{
double r, s, t;
r = pcoords[0];
s = pcoords[1];
t = pcoords[2];
const double a = EXPRA;
const double b = EXPRB;
// clang-format off
// First hexagon
sf[0] = -16./3. * (r - a ) * (r - b) * (s - 1.0 ) * (t - 1.0);
sf[1] = 16./3. * (r - 0.5) * (r - b) * (s - 0.75) * (t - 1.0);
sf[2] = -16./3. * (r - 0.5) * (r - b) * (s - 0.25) * (t - 1.0);
sf[3] = 16./3. * (r - a ) * (r - b) * (s - 0.0 ) * (t - 1.0);
sf[4] = -16./3. * (r - 0.5) * (r - a) * (s - 0.25) * (t - 1.0);
sf[5] = 16./3. * (r - 0.5) * (r - a) * (s - 0.75) * (t - 1.0);
// Second hexagon
sf[6] = 16./3. * (r - a ) * (r - b) * (s - 1.0 ) * (t - 0.0);
sf[7] = -16./3. * (r - 0.5) * (r - b) * (s - 0.75) * (t - 0.0);
sf[8] = 16./3. * (r - 0.5) * (r - b) * (s - 0.25) * (t - 0.0);
sf[9] = -16./3. * (r - a ) * (r - b) * (s - 0.0 ) * (t - 0.0);
sf[10] = 16./3. * (r - 0.5) * (r - a) * (s - 0.25) * (t - 0.0);
sf[11] = -16./3. * (r - 0.5) * (r - a) * (s - 0.75) * (t - 0.0);
// clang-format on
}
//------------------------------------------------------------------------------
void vtkHexagonalPrism::InterpolationDerivs(const double pcoords[3], double derivs[36])
{
double r, s, t;
r = pcoords[0];
s = pcoords[1];
t = pcoords[2];
const double a = EXPRA;
const double b = EXPRB;
// note: a+b=1.0
// clang-format off
// r-derivatives
// First hexagon
derivs[0] = -16./3. * ( 2 * r - 1.0) * (s - 1.0 ) * (t - 1.0);
derivs[1] = 16./3. * ( 2 * r - b - 0.5) * (s - 0.75) * (t - 1.0);
derivs[2] = -16./3. * ( 2 * r - b - 0.5) * (s - 0.25) * (t - 1.0);
derivs[3] = 16./3. * ( 2 * r - 1.0) * (s - 0.0 ) * (t - 1.0);
derivs[4] = -16./3. * ( 2 * r - a - 0.5) * (s - 0.25) * (t - 1.0);
derivs[5] = 16./3. * ( 2 * r - a - 0.5) * (s - 0.75) * (t - 1.0);
// Second hexagon
derivs[6] = 16./3. * ( 2 * r - 1.0) * (s - 1.0 ) * (t - 0.0);
derivs[7] = -16./3. * ( 2 * r - b - 0.5) * (s - 0.75) * (t - 0.0);
derivs[8] = 16./3. * ( 2 * r - b - 0.5) * (s - 0.25) * (t - 0.0);
derivs[9] = -16./3. * ( 2 * r - 1.0) * (s - 0.0 ) * (t - 0.0);
derivs[10] = 16./3. * ( 2 * r - a - 0.5) * (s - 0.25) * (t - 0.0);
derivs[11] = -16./3. * ( 2 * r - a - 0.5) * (s - 0.75) * (t - 0.0);
// s-derivatives
// First hexagon
derivs[12] = -16./3. * (r - a ) * (r - b) * (t - 1.0);
derivs[13] = 16./3. * (r - 0.5) * (r - b) * (t - 1.0);
derivs[14] = -16./3. * (r - 0.5) * (r - b) * (t - 1.0);
derivs[15] = 16./3. * (r - a ) * (r - b) * (t - 1.0);
derivs[16] = -16./3. * (r - 0.5) * (r - a) * (t - 1.0);
derivs[17] = 16./3. * (r - 0.5) * (r - a) * (t - 1.0);
// Second hexagon
derivs[18] = 16./3. * (r - a ) * (r - b) * (t - 0.0);
derivs[19] = -16./3. * (r - 0.5) * (r - b) * (t - 0.0);
derivs[20] = 16./3. * (r - 0.5) * (r - b) * (t - 0.0);
derivs[21] = -16./3. * (r - a ) * (r - b) * (t - 0.0);
derivs[22] = 16./3. * (r - 0.5) * (r - a) * (t - 0.0);
derivs[23] = -16./3. * (r - 0.5) * (r - a) * (t - 0.0);
// t-derivatives
// First hexagon
derivs[24] = -16./3. * (r - a ) * (r - b) * (s - 1.0 );
derivs[25] = 16./3. * (r - 0.5) * (r - b) * (s - 0.75);
derivs[26] = -16./3. * (r - 0.5) * (r - b) * (s - 0.25);
derivs[27] = 16./3. * (r - a ) * (r - b) * (s - 0.0 );
derivs[28] = -16./3. * (r - 0.5) * (r - a) * (s - 0.25);
derivs[29] = 16./3. * (r - 0.5) * (r - a) * (s - 0.75);
// Second hexagon
derivs[30] = 16./3. * (r - a ) * (r - b) * (s - 1.0 );
derivs[31] = -16./3. * (r - 0.5) * (r - b) * (s - 0.75);
derivs[32] = 16./3. * (r - 0.5) * (r - b) * (s - 0.25);
derivs[33] = -16./3. * (r - a ) * (r - b) * (s - 0.0 );
derivs[34] = 16./3. * (r - 0.5) * (r - a) * (s - 0.25);
derivs[35] = -16./3. * (r - 0.5) * (r - a) * (s - 0.75);
// clang-format on
}
//------------------------------------------------------------------------------
void vtkHexagonalPrism::EvaluateLocation(
int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights)
{
int i, j;
double pt[3];
this->InterpolationFunctions(pcoords, weights);
x[0] = x[1] = x[2] = 0.0;
for (i = 0; i < 12; i++)
{
this->Points->GetPoint(i, pt);
for (j = 0; j < 3; j++)
{
x[j] += pt[j] * weights[i];
}
}
}
namespace
{
//
// Hexagonal prism topology:
//
// 4_____3
// /\ /\.
// /10\___/9 \.
// / / \ \.
// 5/___/11 8\___\2
// \ \ / /
// \ \___/ /
// \ 6/ \7 /
// \/_____\/
// 0 1
constexpr vtkIdType edges[vtkHexagonalPrism::NumberOfEdges][2] = {
{ 0, 1 }, // 0
{ 1, 2 }, // 1
{ 2, 3 }, // 2
{ 3, 4 }, // 3
{ 4, 5 }, // 4
{ 5, 0 }, // 5
{ 6, 7 }, // 6
{ 7, 8 }, // 7
{ 8, 9 }, // 8
{ 9, 10 }, // 9
{ 10, 11 }, // 10
{ 11, 6 }, // 11
{ 0, 6 }, // 12
{ 1, 7 }, // 13
{ 2, 8 }, // 14
{ 3, 9 }, // 15
{ 4, 10 }, // 16
{ 5, 11 }, // 17
};
constexpr vtkIdType faces[vtkHexagonalPrism::NumberOfFaces]
[vtkHexagonalPrism::MaximumFaceSize + 1] = {
{ 0, 5, 4, 3, 2, 1, -1 }, // 0
{ 6, 7, 8, 9, 10, 11, -1 }, // 1
{ 0, 1, 7, 6, -1, -1, -1 }, // 2
{ 1, 2, 8, 7, -1, -1, -1 }, // 3
{ 2, 3, 9, 8, -1, -1, -1 }, // 4
{ 3, 4, 10, 9, -1, -1, -1 }, // 5
{ 4, 5, 11, 10, -1, -1, -1 }, // 6
{ 5, 0, 6, 11, -1, -1, -1 }, // 7
};
constexpr vtkIdType edgeToAdjacentFaces[vtkHexagonalPrism::NumberOfEdges][2] = {
{ 0, 2 }, // 0
{ 0, 3 }, // 1
{ 0, 4 }, // 2
{ 0, 5 }, // 3
{ 0, 6 }, // 4
{ 0, 7 }, // 5
{ 1, 2 }, // 6
{ 1, 3 }, // 7
{ 1, 4 }, // 8
{ 1, 5 }, // 9
{ 1, 6 }, // 10
{ 1, 7 }, // 11
{ 2, 7 }, // 12
{ 2, 3 }, // 13
{ 3, 4 }, // 14
{ 4, 5 }, // 15
{ 5, 6 }, // 16
{ 6, 7 }, // 17
};
constexpr vtkIdType faceToAdjacentFaces[vtkHexagonalPrism::NumberOfFaces]
[vtkHexagonalPrism::MaximumFaceSize] = {
{ 7, 6, 5, 4, 3, 2 }, // 0
{ 2, 3, 4, 5, 6, 7 }, // 1
{ 0, 3, 1, 7, -1, -1 }, // 2
{ 0, 4, 1, 2, -1, -1 }, // 3
{ 0, 5, 1, 3, -1, -1 }, // 4
{ 0, 6, 1, 4, -1, -1 }, // 5
{ 0, 7, 1, 5, -1, -1 }, // 6
{ 0, 2, 1, 6, -1, -1 }, // 7
};
constexpr vtkIdType pointToIncidentEdges[vtkHexagonalPrism::NumberOfPoints]
[vtkHexagonalPrism::MaximumValence] = {
{ 0, 12, 5 }, // 0
{ 0, 1, 13 }, // 1
{ 1, 2, 14 }, // 2
{ 2, 3, 15 }, // 3
{ 3, 4, 16 }, // 4
{ 4, 5, 17 }, // 5
{ 6, 11, 12 }, // 6
{ 6, 13, 7 }, // 7
{ 7, 14, 8 }, // 8
{ 8, 15, 9 }, // 9
{ 9, 16, 10 }, // 10
{ 10, 17, 11 }, // 11
};
constexpr vtkIdType pointToIncidentFaces[vtkHexagonalPrism::NumberOfPoints]
[vtkHexagonalPrism::MaximumValence] = {
{ 2, 7, 0 }, // 0
{ 0, 3, 2 }, // 1
{ 0, 4, 3 }, // 2
{ 0, 5, 4 }, // 3
{ 0, 6, 5 }, // 4
{ 0, 7, 6 }, // 5
{ 1, 7, 2 }, // 6
{ 2, 3, 1 }, // 7
{ 3, 4, 1 }, // 8
{ 4, 5, 1 }, // 9
{ 5, 6, 1 }, // 10
{ 6, 7, 1 }, // 11
};
constexpr vtkIdType pointToOneRingPoints[vtkHexagonalPrism::NumberOfPoints]
[vtkHexagonalPrism::MaximumValence] = {
{ 1, 6, 5 }, // 0
{ 0, 2, 7 }, // 1
{ 1, 3, 8 }, // 2
{ 2, 4, 9 }, // 3
{ 3, 5, 10 }, // 4
{ 4, 0, 11 }, // 5
{ 7, 11, 0 }, // 6
{ 6, 1, 8 }, // 7
{ 7, 2, 9 }, // 8
{ 8, 3, 10 }, // 9
{ 9, 4, 11 }, // 10
{ 10, 5, 6 }, // 11
};
constexpr vtkIdType numberOfPointsInFace[vtkHexagonalPrism::NumberOfFaces] = {
6, // 0
6, // 1
4, // 2
4, // 3
4, // 4
4, // 5
4, // 6
4 // 7
};
}
//------------------------------------------------------------------------------
bool vtkHexagonalPrism::GetCentroid(double centroid[3]) const
{
return vtkHexagonalPrism::ComputeCentroid(this->Points, nullptr, centroid);
}
//------------------------------------------------------------------------------
bool vtkHexagonalPrism::ComputeCentroid(
vtkPoints* points, const vtkIdType* pointIds, double centroid[3])
{
double p[3];
if (!pointIds)
{
vtkPolygon::ComputeCentroid(points, numberOfPointsInFace[0], faces[0], centroid);
vtkPolygon::ComputeCentroid(points, numberOfPointsInFace[1], faces[1], p);
}
else
{
vtkIdType facePointsIds[6] = { pointIds[faces[0][0]], pointIds[faces[0][1]],
pointIds[faces[0][2]], pointIds[faces[0][3]], pointIds[faces[0][4]], pointIds[faces[0][5]] };
vtkPolygon::ComputeCentroid(points, numberOfPointsInFace[0], facePointsIds, centroid);
facePointsIds[0] = pointIds[faces[1][0]];
facePointsIds[1] = pointIds[faces[1][1]];
facePointsIds[2] = pointIds[faces[1][2]];
facePointsIds[3] = pointIds[faces[1][3]];
facePointsIds[4] = pointIds[faces[1][4]];
facePointsIds[5] = pointIds[faces[1][5]];
vtkPolygon::ComputeCentroid(points, numberOfPointsInFace[1], facePointsIds, p);
}
centroid[0] += p[0];
centroid[1] += p[1];
centroid[2] += p[2];
centroid[0] *= 0.5;
centroid[1] *= 0.5;
centroid[2] *= 0.5;
return true;
}
//------------------------------------------------------------------------------
bool vtkHexagonalPrism::IsInsideOut()
{
double n0[3], n1[3];
vtkPolygon::ComputeNormal(this->Points, numberOfPointsInFace[0], faces[0], n0);
vtkPolygon::ComputeNormal(this->Points, numberOfPointsInFace[1], faces[1], n1);
return vtkMath::Dot(n0, n1) > 0.0;
}
//------------------------------------------------------------------------------
// Returns the closest face to the point specified. Closeness is measured
// parametrically.
int vtkHexagonalPrism::CellBoundary(int subId, const double pcoords[3], vtkIdList* pts)
{
// load coordinates
double* points = this->GetParametricCoords();
for (int i = 0; i < 6; i++)
{
this->Polygon->PointIds->SetId(i, i);
this->Polygon->Points->SetPoint(i, &points[3 * i]);
}
this->Polygon->CellBoundary(subId, pcoords, pts);
int min = vtkMath::Min(pts->GetId(0), pts->GetId(1));
int max = vtkMath::Max(pts->GetId(0), pts->GetId(1));
// Base on the edge find the quad that correspond:
int index;
if ((index = (max - min)) > 1)
{
index = 7;
}
else
{
index += min + 1;
}
double a[3], b[3], u[3], v[3];
this->Polygon->Points->GetPoint(pts->GetId(0), a);
this->Polygon->Points->GetPoint(pts->GetId(1), b);
u[0] = b[0] - a[0];
u[1] = b[1] - a[1];
v[0] = pcoords[0] - a[0];
v[1] = pcoords[1] - a[1];
double dot = vtkMath::Dot2D(v, u);
double uNorm = vtkMath::Norm2D(u);
if (uNorm != 0.0)
{
dot /= uNorm;
}
dot = (v[0] * v[0] + v[1] * v[1]) - dot * dot;
// mathematically dot must be >= zero but, surprise surprise, it can actually
// be negative
if (dot > 0)
{
dot = sqrt(dot);
}
else
{
dot = 0;
}
const vtkIdType* verts;
if (pcoords[2] < 0.5)
{
// could be closer to face 1
// compare that distance to the distance to the quad.
if (dot < pcoords[2])
{
// We are closer to the quad face
verts = faces[index];
for (int i = 0; i < 4; i++)
{
pts->InsertId(i, verts[i]);
}
}
else
{
// we are closer to the hexa face 1
for (int i = 0; i < 6; i++)
{
pts->InsertId(i, faces[0][i]);
}
}
}
else
{
// could be closer to face 2
// compare that distance to the distance to the quad.
if (dot < (1. - pcoords[2]))
{
// We are closer to the quad face
verts = faces[index];
for (int i = 0; i < 4; i++)
{
pts->InsertId(i, verts[i]);
}
}
else
{
// we are closer to the hexa face 2
for (int i = 0; i < 6; i++)
{
pts->InsertId(i, faces[1][i]);
}
}
}
// determine whether point is inside of hexagon
if (pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 ||
pcoords[2] < 0.0 || pcoords[2] > 1.0)
{
return 0;
}
else
{
return 1;
}
}
//------------------------------------------------------------------------------
const vtkIdType* vtkHexagonalPrism::GetEdgeToAdjacentFacesArray(vtkIdType edgeId)
{
assert(edgeId < vtkHexagonalPrism::NumberOfEdges && "edgeId too large");
return edgeToAdjacentFaces[edgeId];
}
//------------------------------------------------------------------------------
const vtkIdType* vtkHexagonalPrism::GetFaceToAdjacentFacesArray(vtkIdType faceId)
{
assert(faceId < vtkHexagonalPrism::NumberOfFaces && "faceId too large");
return faceToAdjacentFaces[faceId];
}
//------------------------------------------------------------------------------
const vtkIdType* vtkHexagonalPrism::GetPointToIncidentEdgesArray(vtkIdType pointId)
{
assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large");
return pointToIncidentEdges[pointId];
}
//------------------------------------------------------------------------------
const vtkIdType* vtkHexagonalPrism::GetPointToIncidentFacesArray(vtkIdType pointId)
{
assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large");
return pointToIncidentFaces[pointId];
}
//------------------------------------------------------------------------------
const vtkIdType* vtkHexagonalPrism::GetPointToOneRingPointsArray(vtkIdType pointId)
{
assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large");
return pointToOneRingPoints[pointId];
}
//------------------------------------------------------------------------------
const vtkIdType* vtkHexagonalPrism::GetEdgeArray(vtkIdType edgeId)
{
assert(edgeId < vtkHexagonalPrism::NumberOfEdges && "edgeId too large");
return edges[edgeId];
}
//------------------------------------------------------------------------------
vtkCell* vtkHexagonalPrism::GetEdge(int edgeId)
{
const vtkIdType* verts;
verts = edges[edgeId];
// load point id's
this->Line->PointIds->SetId(0, this->PointIds->GetId(verts[0]));
this->Line->PointIds->SetId(1, this->PointIds->GetId(verts[1]));
// load coordinates
this->Line->Points->SetPoint(0, this->Points->GetPoint(verts[0]));
this->Line->Points->SetPoint(1, this->Points->GetPoint(verts[1]));
return this->Line;
}
//------------------------------------------------------------------------------
const vtkIdType* vtkHexagonalPrism::GetFaceArray(vtkIdType faceId)
{
assert(faceId < vtkHexagonalPrism::NumberOfFaces && "faceId too large");
return faces[faceId];
}
//------------------------------------------------------------------------------
vtkCell* vtkHexagonalPrism::GetFace(int faceId)
{
const vtkIdType* verts;
verts = faces[faceId];
if (verts[4] != -1) // polys cell
{
// load point id's
this->Polygon->PointIds->SetId(0, this->PointIds->GetId(verts[0]));
this->Polygon->PointIds->SetId(1, this->PointIds->GetId(verts[1]));
this->Polygon->PointIds->SetId(2, this->PointIds->GetId(verts[2]));
this->Polygon->PointIds->SetId(3, this->PointIds->GetId(verts[3]));
this->Polygon->PointIds->SetId(4, this->PointIds->GetId(verts[4]));
this->Polygon->PointIds->SetId(5, this->PointIds->GetId(verts[5]));
// load coordinates
this->Polygon->Points->SetPoint(0, this->Points->GetPoint(verts[0]));
this->Polygon->Points->SetPoint(1, this->Points->GetPoint(verts[1]));
this->Polygon->Points->SetPoint(2, this->Points->GetPoint(verts[2]));
this->Polygon->Points->SetPoint(3, this->Points->GetPoint(verts[3]));
this->Polygon->Points->SetPoint(4, this->Points->GetPoint(verts[4]));
this->Polygon->Points->SetPoint(5, this->Points->GetPoint(verts[5]));
return this->Polygon;
}
else
{
// load point id's
this->Quad->PointIds->SetId(0, this->PointIds->GetId(verts[0]));
this->Quad->PointIds->SetId(1, this->PointIds->GetId(verts[1]));
this->Quad->PointIds->SetId(2, this->PointIds->GetId(verts[2]));
this->Quad->PointIds->SetId(3, this->PointIds->GetId(verts[3]));
// load coordinates
this->Quad->Points->SetPoint(0, this->Points->GetPoint(verts[0]));
this->Quad->Points->SetPoint(1, this->Points->GetPoint(verts[1]));
this->Quad->Points->SetPoint(2, this->Points->GetPoint(verts[2]));
this->Quad->Points->SetPoint(3, this->Points->GetPoint(verts[3]));
return this->Quad;
}
}
//------------------------------------------------------------------------------
//
// Intersect prism faces against line. Each prism face is a quadrilateral.
//
int vtkHexagonalPrism::IntersectWithLine(const double p1[3], const double p2[3], double tol,
double& t, double x[3], double pcoords[3], int& subId)
{
int intersection = 0;
double pt1[3], pt2[3], pt3[3], pt4[3], pt5[3], pt6[3];
double tTemp;
double pc[3], xTemp[3], dist2, weights[12];
int faceNum;
t = VTK_DOUBLE_MAX;
// first intersect the penta faces
for (faceNum = 0; faceNum < 2; faceNum++)
{
this->Points->GetPoint(faces[faceNum][0], pt1);
this->Points->GetPoint(faces[faceNum][1], pt2);
this->Points->GetPoint(faces[faceNum][2], pt3);
this->Points->GetPoint(faces[faceNum][3], pt4);
this->Points->GetPoint(faces[faceNum][4], pt5);
this->Points->GetPoint(faces[faceNum][5], pt6);
this->Quad->Points->SetPoint(0, pt1);
this->Quad->Points->SetPoint(1, pt2);
this->Quad->Points->SetPoint(2, pt3);
this->Quad->Points->SetPoint(3, pt4);
intersection = this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId);
if (!intersection)
{
this->Quad->Points->SetPoint(0, pt4);
this->Quad->Points->SetPoint(1, pt5);
this->Quad->Points->SetPoint(2, pt6);
this->Quad->Points->SetPoint(3, pt1);
intersection = this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId);
}
if (intersection)
{
intersection = 1;
if (tTemp < t)
{
t = tTemp;
x[0] = xTemp[0];
x[1] = xTemp[1];
x[2] = xTemp[2];
switch (faceNum)
{
case 0:
pcoords[0] = pc[0];
pcoords[1] = pc[1];
pcoords[2] = 0.0;
break;
case 1:
pcoords[0] = pc[0];
pcoords[1] = pc[1];
pcoords[2] = 1.0;
break;
}
}
}
}
// now intersect the quad faces
for (faceNum = 2; faceNum < 8; faceNum++)
{
this->Points->GetPoint(faces[faceNum][0], pt1);
this->Points->GetPoint(faces[faceNum][1], pt2);
this->Points->GetPoint(faces[faceNum][2], pt3);
this->Points->GetPoint(faces[faceNum][3], pt4);
this->Quad->Points->SetPoint(0, pt1);
this->Quad->Points->SetPoint(1, pt2);
this->Quad->Points->SetPoint(2, pt3);
this->Quad->Points->SetPoint(3, pt4);
if (this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId))
{
intersection = 1;
if (tTemp < t)
{
t = tTemp;
x[0] = xTemp[0];
x[1] = xTemp[1];
x[2] = xTemp[2];
this->EvaluatePosition(x, xTemp, subId, pcoords, dist2, weights);
}
}
}
return intersection;
}
//------------------------------------------------------------------------------
int vtkHexagonalPrism::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts)
{
ptIds->Reset();
pts->Reset();
int i, p[4];
// Create 10 tetrahedron. This might not be the minimum, but it is a simple solution.
// The Hexagonal Prism is divided here in two mirrored hexaedra. For the second hexaedron,
// 2 points of each tetra are swapped in ordered to get a positive Jacobian.
p[0] = 0;
p[1] = 1;
p[2] = 3;
p[3] = 6;
for (i = 0; i < 4; i++)
{
ptIds->InsertNextId(this->PointIds->GetId(p[i]));
pts->InsertNextPoint(this->Points->GetPoint(p[i]));
}
p[0] = 1;
p[1] = 6;
p[2] = 7;
p[3] = 8;
for (i = 0; i < 4; i++)
{
ptIds->InsertNextId(this->PointIds->GetId(p[i]));
pts->InsertNextPoint(this->Points->GetPoint(p[i]));
}
p[0] = 1;
p[1] = 6;
p[2] = 8;
p[3] = 3;
for (i = 0; i < 4; i++)
{
ptIds->InsertNextId(this->PointIds->GetId(p[i]));
pts->InsertNextPoint(this->Points->GetPoint(p[i]));
}
p[0] = 1;
p[1] = 3;
p[2] = 8;
p[3] = 2;
for (i = 0; i < 4; i++)
{
ptIds->InsertNextId(this->PointIds->GetId(p[i]));
pts->InsertNextPoint(this->Points->GetPoint(p[i]));
}
p[0] = 3;
p[1] = 8;
p[2] = 9;
p[3] = 6;
for (i = 0; i < 4; i++)
{
ptIds->InsertNextId(this->PointIds->GetId(p[i]));
pts->InsertNextPoint(this->Points->GetPoint(p[i]));
}
p[0] = 0;
p[1] = 5;
p[3] = 3;
p[2] = 6;
for (i = 0; i < 4; i++)
{
ptIds->InsertNextId(this->PointIds->GetId(p[i]));
pts->InsertNextPoint(this->Points->GetPoint(p[i]));
}
p[0] = 5;
p[1] = 6;
p[3] = 11;
p[2] = 10;
for (i = 0; i < 4; i++)
{
ptIds->InsertNextId(this->PointIds->GetId(p[i]));
pts->InsertNextPoint(this->Points->GetPoint(p[i]));
}
p[0] = 5;
p[1] = 6;
p[3] = 10;
p[2] = 3;
for (i = 0; i < 4; i++)
{
ptIds->InsertNextId(this->PointIds->GetId(p[i]));
pts->InsertNextPoint(this->Points->GetPoint(p[i]));
}
p[0] = 5;
p[1] = 3;
p[3] = 10;
p[2] = 4;
for (i = 0; i < 4; i++)
{
ptIds->InsertNextId(this->PointIds->GetId(p[i]));
pts->InsertNextPoint(this->Points->GetPoint(p[i]));
}
p[0] = 3;
p[1] = 10;
p[3] = 9;
p[2] = 6;
for (i = 0; i < 4; i++)
{
ptIds->InsertNextId(this->PointIds->GetId(p[i]));
pts->InsertNextPoint(this->Points->GetPoint(p[i]));
}
return 1;
}
//------------------------------------------------------------------------------
//
// Compute derivatives in x-y-z directions. Use chain rule in combination
// with interpolation function derivatives.
//
void vtkHexagonalPrism::Derivatives(
int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs)
{
double *jI[3], j0[3], j1[3], j2[3];
double functionDerivs[36], sum[3], value;
int i, j, k;
// compute inverse Jacobian and interpolation function derivatives
jI[0] = j0;
jI[1] = j1;
jI[2] = j2;
this->JacobianInverse(pcoords, jI, functionDerivs);
// now compute derivates of values provided
for (k = 0; k < dim; k++) // loop over values per point
{
sum[0] = sum[1] = sum[2] = 0.0;
for (i = 0; i < 12; i++) // loop over interp. function derivatives
{
value = values[dim * i + k];
sum[0] += functionDerivs[i] * value;
sum[1] += functionDerivs[12 + i] * value;
sum[2] += functionDerivs[24 + i] * value;
}
for (j = 0; j < 3; j++) // loop over derivative directions
{
derivs[3 * k + j] = sum[0] * jI[j][0] + sum[1] * jI[j][1] + sum[2] * jI[j][2];
}
}
}
//------------------------------------------------------------------------------
// Given parametric coordinates compute inverse Jacobian transformation
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
// function derivatives.
void vtkHexagonalPrism::JacobianInverse(
const double pcoords[3], double** inverse, double derivs[36])
{
int i, j;
double *m[3], m0[3], m1[3], m2[3];
double x[3];
// compute interpolation function derivatives
this->InterpolationDerivs(pcoords, derivs);
// create Jacobian matrix
m[0] = m0;
m[1] = m1;
m[2] = m2;
for (i = 0; i < 3; i++) // initialize matrix
{
m0[i] = m1[i] = m2[i] = 0.0;
}
for (j = 0; j < 12; j++)
{
this->Points->GetPoint(j, x);
for (i = 0; i < 3; i++)
{
m0[i] += x[i] * derivs[j];
m1[i] += x[i] * derivs[12 + j];
m2[i] += x[i] * derivs[24 + j];
}
}
// now find the inverse
if (vtkMath::InvertMatrix(m, inverse, 3) == 0)
{
vtkErrorMacro(<< "Jacobian inverse not found");
return;
}
}
//------------------------------------------------------------------------------
vtkIdType vtkHexagonalPrism::GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts)
{
assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large");
pts = pointToOneRingPoints[pointId];
return vtkHexagonalPrism::MaximumValence;
}
//------------------------------------------------------------------------------
vtkIdType vtkHexagonalPrism::GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds)
{
assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large");
faceIds = pointToIncidentFaces[pointId];
return vtkHexagonalPrism::MaximumValence;
}
//------------------------------------------------------------------------------
vtkIdType vtkHexagonalPrism::GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds)
{
assert(pointId < vtkHexagonalPrism::NumberOfPoints && "pointId too large");
edgeIds = pointToIncidentEdges[pointId];
return vtkHexagonalPrism::MaximumValence;
}
//------------------------------------------------------------------------------
vtkIdType vtkHexagonalPrism::GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds)
{
assert(faceId < vtkHexagonalPrism::NumberOfFaces && "faceId too large");
faceIds = faceToAdjacentFaces[faceId];
return numberOfPointsInFace[faceId];
}
//------------------------------------------------------------------------------
void vtkHexagonalPrism::GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts)
{
assert(edgeId < vtkHexagonalPrism::NumberOfEdges && "edgeId too large");
pts = edgeToAdjacentFaces[edgeId];
}
//------------------------------------------------------------------------------
void vtkHexagonalPrism::GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts)
{
assert(edgeId < vtkHexagonalPrism::NumberOfEdges && "edgeId too large");
pts = this->GetEdgeArray(edgeId);
}
//------------------------------------------------------------------------------
vtkIdType vtkHexagonalPrism::GetFacePoints(vtkIdType faceId, const vtkIdType*& pts)
{
assert(faceId < vtkHexagonalPrism::NumberOfFaces && "faceId too large");
pts = this->GetFaceArray(faceId);
return numberOfPointsInFace[faceId];
}
static double vtkHexagonalPrismCellPCoords[36] = {
0.5, 0.0, 0.0, //
EXPRA, 0.25, 0.0, //
EXPRA, 0.75, 0.0, //
0.5, 1.0, 0.0, //
EXPRB, 0.75, 0.0, //
EXPRB, 0.25, 0.0, //
0.5, 0.0, 1.0, //
EXPRA, 0.25, 1.0, //
EXPRA, 0.75, 1.0, //
0.5, 1.0, 1.0, //
EXPRB, 0.75, 1.0, //
EXPRB, 0.25, 1.0, //
};
//------------------------------------------------------------------------------
double* vtkHexagonalPrism::GetParametricCoords()
{
return vtkHexagonalPrismCellPCoords;
}
//------------------------------------------------------------------------------
void vtkHexagonalPrism::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Line:\n";
this->Line->PrintSelf(os, indent.GetNextIndent());
os << indent << "Quad:\n";
this->Quad->PrintSelf(os, indent.GetNextIndent());
os << indent << "Polygon:\n";
this->Polygon->PrintSelf(os, indent.GetNextIndent());
}