/*========================================================================= Program: Visualization Toolkit Module: vtkHexahedron.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkHexahedron.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkDoubleArray.h" #include "vtkIncrementalPointLocator.h" #include "vtkLine.h" #include "vtkMarchingCubesTriangleCases.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPoints.h" #include "vtkPolygon.h" #include "vtkQuad.h" #include #include vtkStandardNewMacro(vtkHexahedron); namespace { const double VTK_DIVERGED = 1.e6; const int VTK_HEX_MAX_ITERATION = 10; const double VTK_HEX_CONVERGED = 1.e-05; const double VTK_HEX_OUTSIDE_CELL_TOLERANCE = 1.e-06; } //------------------------------------------------------------------------------ // Construct the hexahedron with eight points. vtkHexahedron::vtkHexahedron() { this->Points->SetNumberOfPoints(8); this->PointIds->SetNumberOfIds(8); for (int i = 0; i < 8; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i, 0); } this->Line = vtkLine::New(); this->Quad = vtkQuad::New(); } //------------------------------------------------------------------------------ vtkHexahedron::~vtkHexahedron() { this->Line->Delete(); this->Quad->Delete(); } //------------------------------------------------------------------------------ // Method to calculate parametric coordinates in an eight noded // linear hexahedron element from global coordinates. // int vtkHexahedron::EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) { double params[3] = { 0.5, 0.5, 0.5 }; double derivs[24]; // Efficient point access vtkDoubleArray* ptArray = static_cast(this->Points->GetData()); const double* pts = ptArray->GetPointer(0); const double *pt0, *pt1; // compute a bound on the volume to get a scale for an acceptable determinant vtkIdType diagonals[4][2] = { { 0, 6 }, { 1, 7 }, { 2, 4 }, { 3, 5 } }; double longestDiagonal = 0; for (int i = 0; i < 4; i++) { pt0 = pts + 3 * diagonals[i][0]; pt1 = pts + 3 * diagonals[i][1]; double d2 = vtkMath::Distance2BetweenPoints(pt0, pt1); if (longestDiagonal < d2) { longestDiagonal = d2; } } // longestDiagonal value is already squared double volumeBound = pow(longestDiagonal, 1.5); double determinantTolerance = 1e-20 < .00001 * volumeBound ? 1e-20 : .00001 * volumeBound; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = 0.5; // enter iteration loop int iteration, converged = 0; for (iteration = 0; !converged && (iteration < VTK_HEX_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives vtkHexahedron::InterpolationFunctions(pcoords, weights); vtkHexahedron::InterpolationDerivs(pcoords, derivs); // calculate newton functions double fcol[3] = { 0, 0, 0 }, rcol[3] = { 0, 0, 0 }, scol[3] = { 0, 0, 0 }, tcol[3] = { 0, 0, 0 }; for (int i = 0; i < 8; i++) { for (int j = 0; j < 3; j++) { const double coord = pts[3 * i + j]; fcol[j] += coord * weights[i]; rcol[j] += coord * derivs[i]; scol[j] += coord * derivs[i + 8]; tcol[j] += coord * derivs[i + 16]; } } for (int i = 0; i < 3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements double d = vtkMath::Determinant3x3(rcol, scol, tcol); if (fabs(d) < determinantTolerance) { return -1; } pcoords[0] = params[0] - vtkMath::Determinant3x3(fcol, scol, tcol) / d; pcoords[1] = params[1] - vtkMath::Determinant3x3(rcol, fcol, tcol) / d; pcoords[2] = params[2] - vtkMath::Determinant3x3(rcol, scol, fcol) / d; // check for convergence if (((fabs(pcoords[0] - params[0])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[1] - params[1])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[2] - params[2])) < VTK_HEX_CONVERGED)) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if (!converged) { return -1; } vtkHexahedron::InterpolationFunctions(pcoords, weights); double lowerlimit = 0.0 - VTK_HEX_OUTSIDE_CELL_TOLERANCE; double upperlimit = 1.0 + VTK_HEX_OUTSIDE_CELL_TOLERANCE; if (pcoords[0] >= lowerlimit && pcoords[0] <= upperlimit && pcoords[1] >= lowerlimit && pcoords[1] <= upperlimit && pcoords[2] >= lowerlimit && pcoords[2] <= upperlimit) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; // inside hexahedron } return 1; } else { double pc[3], w[8]; if (closestPoint) { for (int i = 0; i < 3; i++) // only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, static_cast(w)); dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x); } return 0; } } //------------------------------------------------------------------------------ // Compute iso-parametric interpolation functions // void vtkHexahedron::InterpolationFunctions(const double pcoords[3], double sf[8]) { double rm, sm, tm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; tm = 1. - pcoords[2]; sf[0] = rm * sm * tm; sf[1] = pcoords[0] * sm * tm; sf[2] = pcoords[0] * pcoords[1] * tm; sf[3] = rm * pcoords[1] * tm; sf[4] = rm * sm * pcoords[2]; sf[5] = pcoords[0] * sm * pcoords[2]; sf[6] = pcoords[0] * pcoords[1] * pcoords[2]; sf[7] = rm * pcoords[1] * pcoords[2]; } //------------------------------------------------------------------------------ void vtkHexahedron::InterpolationDerivs(const double pcoords[3], double derivs[24]) { double rm, sm, tm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; tm = 1. - pcoords[2]; // r-derivatives derivs[0] = -sm * tm; derivs[1] = sm * tm; derivs[2] = pcoords[1] * tm; derivs[3] = -pcoords[1] * tm; derivs[4] = -sm * pcoords[2]; derivs[5] = sm * pcoords[2]; derivs[6] = pcoords[1] * pcoords[2]; derivs[7] = -pcoords[1] * pcoords[2]; // s-derivatives derivs[8] = -rm * tm; derivs[9] = -pcoords[0] * tm; derivs[10] = pcoords[0] * tm; derivs[11] = rm * tm; derivs[12] = -rm * pcoords[2]; derivs[13] = -pcoords[0] * pcoords[2]; derivs[14] = pcoords[0] * pcoords[2]; derivs[15] = rm * pcoords[2]; // t-derivatives derivs[16] = -rm * sm; derivs[17] = -pcoords[0] * sm; derivs[18] = -pcoords[0] * pcoords[1]; derivs[19] = -rm * pcoords[1]; derivs[20] = rm * sm; derivs[21] = pcoords[0] * sm; derivs[22] = pcoords[0] * pcoords[1]; derivs[23] = rm * pcoords[1]; } //------------------------------------------------------------------------------ void vtkHexahedron::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { int i, j; double pt[3]; this->InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i = 0; i < 8; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 3; j++) { x[j] += pt[j] * weights[i]; } } } //------------------------------------------------------------------------------ int vtkHexahedron::CellBoundary(int vtkNotUsed(subId), const double pcoords[3], vtkIdList* pts) { double t1 = pcoords[0] - pcoords[1]; double t2 = 1.0 - pcoords[0] - pcoords[1]; double t3 = pcoords[1] - pcoords[2]; double t4 = 1.0 - pcoords[1] - pcoords[2]; double t5 = pcoords[2] - pcoords[0]; double t6 = 1.0 - pcoords[2] - pcoords[0]; pts->SetNumberOfIds(4); // compare against six planes in parametric space that divide element // into six pieces. if (t3 >= 0.0 && t4 >= 0.0 && t5 < 0.0 && t6 >= 0.0) { pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(1)); pts->SetId(2, this->PointIds->GetId(2)); pts->SetId(3, this->PointIds->GetId(3)); } else if (t1 >= 0.0 && t2 < 0.0 && t5 < 0.0 && t6 < 0.0) { pts->SetId(0, this->PointIds->GetId(1)); pts->SetId(1, this->PointIds->GetId(2)); pts->SetId(2, this->PointIds->GetId(6)); pts->SetId(3, this->PointIds->GetId(5)); } else if (t1 >= 0.0 && t2 >= 0.0 && t3 < 0.0 && t4 >= 0.0) { pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(1)); pts->SetId(2, this->PointIds->GetId(5)); pts->SetId(3, this->PointIds->GetId(4)); } else if (t3 < 0.0 && t4 < 0.0 && t5 >= 0.0 && t6 < 0.0) { pts->SetId(0, this->PointIds->GetId(4)); pts->SetId(1, this->PointIds->GetId(5)); pts->SetId(2, this->PointIds->GetId(6)); pts->SetId(3, this->PointIds->GetId(7)); } else if (t1 < 0.0 && t2 >= 0.0 && t5 >= 0.0 && t6 >= 0.0) { pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(4)); pts->SetId(2, this->PointIds->GetId(7)); pts->SetId(3, this->PointIds->GetId(3)); } else // if ( t1 < 0.0 && t2 < 0.0 && t3 >= 0.0 && t6 < 0.0 ) { pts->SetId(0, this->PointIds->GetId(2)); pts->SetId(1, this->PointIds->GetId(3)); pts->SetId(2, this->PointIds->GetId(7)); pts->SetId(3, this->PointIds->GetId(6)); } if (pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 || pcoords[2] < 0.0 || pcoords[2] > 1.0) { return 0; } else { return 1; } } namespace { //------------------------------------------------------------------------------ // // Hexahedron topology // // 1_______2 // |\ /| // |5\___/6| // | | | | // | |___| | // |4/ \7| // |/_____\| // 0 3 // constexpr vtkIdType edges[vtkHexahedron::NumberOfEdges][2] = { { 0, 1 }, // 0 { 1, 2 }, // 1 { 3, 2 }, // 2 { 0, 3 }, // 3 { 4, 5 }, // 4 { 5, 6 }, // 5 { 7, 6 }, // 6 { 4, 7 }, // 7 { 0, 4 }, // 8 { 1, 5 }, // 9 { 3, 7 }, // 10 { 2, 6 }, // 11 }; constexpr vtkIdType faces[vtkHexahedron::NumberOfFaces][vtkHexahedron::MaximumFaceSize + 1] = { { 0, 4, 7, 3, -1 }, // 0 { 1, 2, 6, 5, -1 }, // 1 { 0, 1, 5, 4, -1 }, // 2 { 3, 7, 6, 2, -1 }, // 3 { 0, 3, 2, 1, -1 }, // 4 { 4, 5, 6, 7, -1 }, // 5 }; constexpr vtkIdType edgeToAdjacentFaces[vtkHexahedron::NumberOfEdges][2] = { { 2, 4 }, // 0 { 1, 4 }, // 1 { 3, 4 }, // 2 { 0, 4 }, // 3 { 2, 5 }, // 4 { 1, 5 }, // 5 { 3, 5 }, // 6 { 0, 5 }, // 7 { 0, 2 }, // 8 { 1, 2 }, // 9 { 0, 3 }, // 10 { 1, 3 }, // 11 }; constexpr vtkIdType faceToAdjacentFaces[vtkHexahedron::NumberOfFaces] [vtkHexahedron::MaximumFaceSize] = { { 4, 2, 5, 3 }, // 0 { 4, 3, 5, 2 }, // 1 { 4, 1, 5, 0 }, // 2 { 0, 5, 1, 4 }, // 3 { 0, 3, 1, 2 }, // 4 { 2, 1, 0, 3 }, // 5 }; constexpr vtkIdType pointToIncidentEdges[vtkHexahedron::NumberOfPoints] [vtkHexahedron::MaximumValence] = { { 0, 8, 3 }, // 0 { 0, 1, 9 }, // 1 { 1, 2, 11 }, // 2 { 2, 3, 10 }, // 3 { 7, 8, 4 }, // 4 { 4, 9, 5 }, // 5 { 5, 11, 6 }, // 6 { 6, 10, 7 }, // 7 }; constexpr vtkIdType pointToIncidentFaces[vtkHexahedron::NumberOfPoints] [vtkHexahedron::MaximumValence] = { { 2, 0, 4 }, // 0 { 4, 1, 2 }, // 1 { 4, 3, 1 }, // 2 { 4, 0, 3 }, // 3 { 5, 2, 0 }, // 4 { 2, 1, 5 }, // 5 { 1, 3, 5 }, // 6 { 3, 0, 5 }, // 7 }; constexpr vtkIdType pointToOneRingPoints[vtkHexahedron::NumberOfPoints] [vtkHexahedron::MaximumValence] = { { 1, 4, 3 }, // 0 { 0, 2, 5 }, // 1 { 1, 3, 6 }, // 2 { 2, 0, 7 }, // 3 { 5, 7, 0 }, // 4 { 4, 1, 6 }, // 5 { 5, 2, 7 }, // 6 { 6, 3, 4 }, // 7 }; } //------------------------------------------------------------------------------ bool vtkHexahedron::GetCentroid(double centroid[3]) const { return vtkHexahedron::ComputeCentroid(this->Points, nullptr, centroid); } //------------------------------------------------------------------------------ bool vtkHexahedron::ComputeCentroid( vtkPoints* points, const vtkIdType* pointIds, double centroid[3]) { double p[3]; if (pointIds) { vtkIdType facePointIds[4] = { pointIds[faces[0][0]], pointIds[faces[0][1]], pointIds[faces[0][2]], pointIds[faces[0][3]] }; vtkPolygon::ComputeCentroid(points, vtkHexahedron::MaximumFaceSize, facePointIds, centroid); facePointIds[0] = pointIds[faces[1][0]]; facePointIds[1] = pointIds[faces[1][1]]; facePointIds[2] = pointIds[faces[1][2]]; facePointIds[3] = pointIds[faces[1][3]]; vtkPolygon::ComputeCentroid(points, vtkHexahedron::MaximumFaceSize, facePointIds, p); } else { vtkPolygon::ComputeCentroid(points, vtkHexahedron::MaximumFaceSize, faces[0], centroid); vtkPolygon::ComputeCentroid(points, vtkHexahedron::MaximumFaceSize, faces[1], p); } centroid[0] += p[0]; centroid[1] += p[1]; centroid[2] += p[2]; centroid[0] *= 0.5; centroid[1] *= 0.5; centroid[2] *= 0.5; return true; } // Marching cubes case table // #include "vtkMarchingCubesTriangleCases.h" void vtkHexahedron::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { static const int CASE_MASK[8] = { 1, 2, 4, 8, 16, 32, 64, 128 }; vtkMarchingCubesTriangleCases* triCase; EDGE_LIST* edge; int i, j, index; const vtkIdType* vert; int v1, v2, newCellId; vtkIdType pts[3]; double t, x1[3], x2[3], x[3], deltaScalar; vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells(); // Build the case table for (i = 0, index = 0; i < 8; i++) { if (cellScalars->GetComponent(i, 0) >= value) { index |= CASE_MASK[i]; } } triCase = vtkMarchingCubesTriangleCases::GetCases() + index; edge = triCase->edges; for (; edge[0] > -1; edge += 3) { for (i = 0; i < 3; i++) // insert triangle { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1], 0) - cellScalars->GetComponent(vert[0], 0)); if (deltaScalar > 0) { v1 = vert[0]; v2 = vert[1]; } else { v1 = vert[1]; v2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation t = (deltaScalar == 0.0 ? 0.0 : (value - cellScalars->GetComponent(v1, 0)) / deltaScalar); this->Points->GetPoint(v1, x1); this->Points->GetPoint(v2, x2); for (j = 0; j < 3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if (locator->InsertUniquePoint(x, pts[i])) { if (outPd) { vtkIdType p1 = this->PointIds->GetId(v1); vtkIdType p2 = this->PointIds->GetId(v2); outPd->InterpolateEdge(inPd, pts[i], p1, p2, t); } } } // check for degenerate triangle if (pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2]) { newCellId = offset + polys->InsertNextCell(3, pts); if (outCd) { outCd->CopyData(inCd, cellId, newCellId); } } } } //------------------------------------------------------------------------------ const vtkIdType* vtkHexahedron::GetEdgeToAdjacentFacesArray(vtkIdType edgeId) { assert(edgeId < vtkHexahedron::NumberOfEdges && "edgeId too large"); return edgeToAdjacentFaces[edgeId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexahedron::GetFaceToAdjacentFacesArray(vtkIdType faceId) { assert(faceId < vtkHexahedron::NumberOfFaces && "faceId too large"); return faceToAdjacentFaces[faceId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexahedron::GetPointToIncidentEdgesArray(vtkIdType pointId) { assert(pointId < vtkHexahedron::NumberOfPoints && "pointId too large"); return pointToIncidentEdges[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexahedron::GetPointToIncidentFacesArray(vtkIdType pointId) { assert(pointId < vtkHexahedron::NumberOfPoints && "pointId too large"); return pointToIncidentFaces[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexahedron::GetPointToOneRingPointsArray(vtkIdType pointId) { assert(pointId < vtkHexahedron::NumberOfPoints && "pointId too large"); return pointToOneRingPoints[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexahedron::GetEdgeArray(vtkIdType edgeId) { assert(edgeId < vtkHexahedron::NumberOfEdges && "edgeId too large"); return edges[edgeId]; } //------------------------------------------------------------------------------ // Return the case table for table-based isocontouring (aka marching cubes // style implementations). A linear 3D cell with N vertices will have 2**N // cases. The cases list three edges in order to produce one output triangle. int* vtkHexahedron::GetTriangleCases(int caseId) { return &(*(vtkMarchingCubesTriangleCases::GetCases() + caseId)->edges); } //------------------------------------------------------------------------------ vtkCell* vtkHexahedron::GetEdge(int edgeId) { const vtkIdType* verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1, this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1, this->Points->GetPoint(verts[1])); return this->Line; } //------------------------------------------------------------------------------ const vtkIdType* vtkHexahedron::GetFaceArray(vtkIdType faceId) { assert(faceId < vtkHexahedron::NumberOfFaces && "faceId too large"); return faces[faceId]; } //------------------------------------------------------------------------------ vtkCell* vtkHexahedron::GetFace(int faceId) { const vtkIdType* verts; int i; verts = faces[faceId]; for (i = 0; i < 4; i++) { this->Quad->PointIds->SetId(i, this->PointIds->GetId(verts[i])); this->Quad->Points->SetPoint(i, this->Points->GetPoint(verts[i])); } return this->Quad; } //------------------------------------------------------------------------------ // // Intersect hexa faces against line. Each hexa face is a quadrilateral. // int vtkHexahedron::IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { int intersection = 0; double pt1[3], pt2[3], pt3[3], pt4[3]; double tTemp; double pc[3], xTemp[3]; int faceNum; t = VTK_DOUBLE_MAX; for (faceNum = 0; faceNum < 6; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Points->GetPoint(faces[faceNum][3], pt4); this->Quad->Points->SetPoint(0, pt1); this->Quad->Points->SetPoint(1, pt2); this->Quad->Points->SetPoint(2, pt3); this->Quad->Points->SetPoint(3, pt4); if (this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId)) { intersection = 1; if (tTemp < t) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = 0.0; pcoords[1] = pc[0]; pcoords[2] = 0.0; break; case 1: pcoords[0] = 1.0; pcoords[1] = pc[0]; pcoords[2] = 0.0; break; case 2: pcoords[0] = pc[0]; pcoords[1] = 0.0; pcoords[2] = pc[1]; break; case 3: pcoords[0] = pc[0]; pcoords[1] = 1.0; pcoords[2] = pc[1]; break; case 4: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 5: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0; break; } } } } return intersection; } //------------------------------------------------------------------------------ int vtkHexahedron::Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) { int p[4], i; ptIds->Reset(); pts->Reset(); // Create five tetrahedron. Triangulation varies depending upon index. This // is necessary to ensure compatible voxel triangulations. if ((index % 2)) { p[0] = 0; p[1] = 1; p[2] = 3; p[3] = 4; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 4; p[2] = 5; p[3] = 6; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 4; p[2] = 6; p[3] = 3; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 3; p[2] = 6; p[3] = 2; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 3; p[1] = 6; p[2] = 7; p[3] = 4; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } else { p[0] = 2; p[1] = 1; p[2] = 5; p[3] = 0; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 2; p[2] = 3; p[3] = 7; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 2; p[1] = 5; p[2] = 6; p[3] = 7; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 7; p[2] = 4; p[3] = 5; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 2; p[2] = 7; p[3] = 5; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } return 1; } //------------------------------------------------------------------------------ // Compute derivatives in x-y-z directions. Use chain rule in combination // with interpolation function derivatives. // void vtkHexahedron::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[24], sum[3]; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k = 0; k < dim; k++) // loop over values per point { sum[0] = sum[1] = sum[2] = 0.0; for (i = 0; i < 8; i++) // loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim * i + k]; sum[1] += functionDerivs[8 + i] * values[dim * i + k]; sum[2] += functionDerivs[16 + i] * values[dim * i + k]; } for (j = 0; j < 3; j++) // loop over derivative directions { derivs[3 * k + j] = sum[0] * jI[j][0] + sum[1] * jI[j][1] + sum[2] * jI[j][2]; } } } //------------------------------------------------------------------------------ // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void vtkHexahedron::JacobianInverse(const double pcoords[3], double** inverse, double derivs[24]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i = 0; i < 3; i++) // initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for (j = 0; j < 8; j++) { this->Points->GetPoint(j, x); for (i = 0; i < 3; i++) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[8 + j]; m2[i] += x[i] * derivs[16 + j]; } } // now find the inverse if (vtkMath::InvertMatrix(m, inverse, 3) == 0) { vtkErrorMacro(<< "Jacobian inverse not found"); return; } } //------------------------------------------------------------------------------ vtkIdType vtkHexahedron::GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) { assert(pointId < vtkHexahedron::NumberOfPoints && "pointId too large"); pts = pointToOneRingPoints[pointId]; return vtkHexahedron::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkHexahedron::GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) { assert(pointId < vtkHexahedron::NumberOfPoints && "pointId too large"); faceIds = pointToIncidentFaces[pointId]; return vtkHexahedron::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkHexahedron::GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) { assert(pointId < vtkHexahedron::NumberOfPoints && "pointId too large"); edgeIds = pointToIncidentEdges[pointId]; return vtkHexahedron::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkHexahedron::GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) { assert(faceId < vtkHexahedron::NumberOfFaces && "faceId too large"); faceIds = faceToAdjacentFaces[faceId]; return vtkHexahedron::MaximumFaceSize; } //------------------------------------------------------------------------------ void vtkHexahedron::GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) { assert(edgeId < vtkHexahedron::NumberOfEdges && "edgeId too large"); pts = edgeToAdjacentFaces[edgeId]; } //------------------------------------------------------------------------------ void vtkHexahedron::GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) { assert(edgeId < vtkHexahedron::NumberOfEdges && "edgeId too large"); pts = this->GetEdgeArray(edgeId); } //------------------------------------------------------------------------------ vtkIdType vtkHexahedron::GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) { assert(faceId < vtkHexahedron::NumberOfFaces && "faceId too large"); pts = this->GetFaceArray(faceId); return vtkHexahedron::MaximumFaceSize; } //------------------------------------------------------------------------------ static double vtkHexahedronCellPCoords[24] = { 0.0, 0.0, 0.0, // 1.0, 0.0, 0.0, // 1.0, 1.0, 0.0, // 0.0, 1.0, 0.0, // 0.0, 0.0, 1.0, // 1.0, 0.0, 1.0, // 1.0, 1.0, 1.0, // 0.0, 1.0, 1.0 // }; double* vtkHexahedron::GetParametricCoords() { return vtkHexahedronCellPCoords; } //------------------------------------------------------------------------------ void vtkHexahedron::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Line:\n"; this->Line->PrintSelf(os, indent.GetNextIndent()); os << indent << "Quad:\n"; this->Quad->PrintSelf(os, indent.GetNextIndent()); }