/*========================================================================= Program: Visualization Toolkit Module: vtkLine.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkLine * @brief cell represents a 1D line * * vtkLine is a concrete implementation of vtkCell to represent a 1D line. */ #ifndef vtkLine_h #define vtkLine_h #include "vtkCell.h" #include "vtkCommonDataModelModule.h" // For export macro #include "vtkDeprecation.h" // For VTK_DEPRECATED_IN_9_1_0 class vtkIncrementalPointLocator; class VTKCOMMONDATAMODEL_EXPORT vtkLine : public vtkCell { public: static vtkLine* New(); vtkTypeMacro(vtkLine, vtkCell); void PrintSelf(ostream& os, vtkIndent indent) override; ///@{ /** * See the vtkCell API for descriptions of these methods. */ int GetCellType() override { return VTK_LINE; } int GetCellDimension() override { return 1; } int GetNumberOfEdges() override { return 0; } int GetNumberOfFaces() override { return 0; } vtkCell* GetEdge(int) override { return nullptr; } vtkCell* GetFace(int) override { return nullptr; } int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override; void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override; int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) override; void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override; int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override; void Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) override; double* GetParametricCoords() override; ///@} /** * Inflates this line by extending both end by dist. A degenerate line remains * untouched. * * \return 1 if inflation was successful, 0 if no inflation was performed */ int Inflate(double dist) override; /** * Clip this line using scalar value provided. Like contouring, except * that it cuts the line to produce other lines. */ void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* lines, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) override; /** * Return the center of the triangle in parametric coordinates. */ int GetParametricCenter(double pcoords[3]) override; /** * Line-line intersection. Intersection has to occur within [0,1] parametric * coordinates and with specified tolerance. */ int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; // Return result type for Intersection() and Intersection3D() enum IntersectionType { NoIntersect = 0, Intersect = 2, OnLine = 3 }; // Control the meaning of the provided tolerance. Fuzzy tolerances allow // intersections to occur outside of the range (0<=u,v<=1) as long as they // fall within the tolerance provided. Thus non-fuzzy tolerances must be // within the (0,1) parametric range (inclusive) enum ToleranceType { Relative = 0, Absolute = 1, RelativeFuzzy = 2, AbsoluteFuzzy = 3 }; /** * Performs intersection of the projection of two finite 3D lines onto a 2D * plane. An intersection is found if the projection of the two lines onto * the plane perpendicular to the cross product of the two lines intersect. * The parameters (u,v) are the parametric coordinates of the lines at the * position of closest approach. * * The results are of type vtkLine::IntersectionType. An intersection occurs * if (u,v) are in the interval [0,1] and the intersection point falls within * the tolerance specified. Different types of tolerancing can be used by * specifying a tolerance type with the enum provided (vtkLine::ToleranceType). * The tolerance types may be: Relative) relative to the projection line lengths * (this is default); or Absolute) the distance between the points at (u,v) on * the two lines must be less than or equal to the tolerance specified. * */ static int Intersection(const double p1[3], const double p2[3], const double x1[3], const double x2[3], double& u, double& v, const double tolerance = 1e-6, int toleranceType = ToleranceType::Relative); /** * Performs intersection of two finite 3D lines. An intersection is found if * the projection of the two lines onto the plane perpendicular to the cross * product of the two lines intersect, and if the distance between the * closest points of approach are within a relative tolerance. The parameters * (u,v) are the parametric coordinates of the lines at the position of * closest approach. * * The results are of type vtkLine::IntersectionType. * * NOTE: Legacy method, returns vtkLine::Intersection(...). */ VTK_DEPRECATED_IN_9_1_0("Use vtkLine::Intersection(...) instead.") static int Intersection3D(double p1[3], double p2[3], double x1[3], double x2[3], double& u, double& v, const double tolerance = 1e-6); /** * Compute the distance of a point x to a finite line (p1,p2). The method * computes the parametric coordinate t and the point location on the * line. Note that t is unconstrained (i.e., it may lie outside the range * [0,1]) but the closest point will lie within the finite line [p1,p2], if * it is defined. Also, the method returns the distance squared between x and * the line (p1,p2). */ static double DistanceToLine(const double x[3], const double p1[3], const double p2[3], double& t, double closestPoint[3] = nullptr); /** * Determine the distance of the current vertex to the edge defined by * the vertices provided. Returns distance squared. Note: line is assumed * infinite in extent. */ static double DistanceToLine(const double x[3], const double p1[3], const double p2[3]); /** * Computes the shortest distance squared between two infinite lines, each * defined by a pair of points (l0,l1) and (m0,m1). * Upon return, the closest points on the two line segments will be stored * in closestPt1 and closestPt2. Their parametric coords * (-inf <= t0, t1 <= inf) will be stored in t0 and t1. The return value is * the shortest distance squared between the two line-segments. */ static double DistanceBetweenLines(double l0[3], double l1[3], double m0[3], double m1[3], double closestPt1[3], double closestPt2[3], double& t1, double& t2); /** * Computes the shortest distance squared between two finite line segments * defined by their end points (l0,l1) and (m0,m1). * Upon return, the closest points on the two line segments will be stored * in closestPt1 and closestPt2. Their parametric coords (0 <= t0, t1 <= 1) * will be stored in t0 and t1. The return value is the shortest distance * squared between the two line-segments. */ static double DistanceBetweenLineSegments(double l0[3], double l1[3], double m0[3], double m1[3], double closestPt1[3], double closestPt2[3], double& t1, double& t2); static void InterpolationFunctions(const double pcoords[3], double weights[2]); static void InterpolationDerivs(const double pcoords[3], double derivs[2]); ///@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(const double pcoords[3], double weights[2]) override { vtkLine::InterpolationFunctions(pcoords, weights); } void InterpolateDerivs(const double pcoords[3], double derivs[2]) override { vtkLine::InterpolationDerivs(pcoords, derivs); } ///@} protected: vtkLine(); ~vtkLine() override = default; private: vtkLine(const vtkLine&) = delete; void operator=(const vtkLine&) = delete; }; //---------------------------------------------------------------------------- inline int vtkLine::GetParametricCenter(double pcoords[3]) { pcoords[0] = 0.5; pcoords[1] = pcoords[2] = 0.0; return 0; } #endif