/*========================================================================= Program: Visualization Toolkit Module: vtkPixel.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkPixel.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkDataArrayRange.h" #include "vtkIncrementalPointLocator.h" #include "vtkLine.h" #include "vtkMarchingSquaresLineCases.h" #include "vtkMath.h" #include "vtkMathUtilities.h" #include "vtkObjectFactory.h" #include "vtkPlane.h" #include "vtkPointData.h" #include "vtkPoints.h" #include "vtkQuad.h" #include "vtkTriangle.h" #include #include vtkStandardNewMacro(vtkPixel); //------------------------------------------------------------------------------ // Construct the pixel with four points. vtkPixel::vtkPixel() { int i; this->Points->SetNumberOfPoints(4); this->PointIds->SetNumberOfIds(4); for (i = 0; i < 4; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); } for (i = 0; i < 4; i++) { this->PointIds->SetId(i, 0); } this->Line = vtkLine::New(); } //------------------------------------------------------------------------------ vtkPixel::~vtkPixel() { this->Line->Delete(); } //------------------------------------------------------------------------------ int vtkPixel::EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) { double pt1[3], pt2[3], pt3[3]; int i; double p[3], p21[3], p31[3], cp[3]; double l21, l31, n[3]; subId = 0; pcoords[2] = 0.0; // Get normal for pixel // this->Points->GetPoint(0, pt1); this->Points->GetPoint(1, pt2); this->Points->GetPoint(2, pt3); vtkTriangle::ComputeNormal(pt1, pt2, pt3, n); // Project point to plane // vtkPlane::ProjectPoint(x, pt1, n, cp); for (i = 0; i < 3; i++) { p21[i] = pt2[i] - pt1[i]; p31[i] = pt3[i] - pt1[i]; p[i] = x[i] - pt1[i]; } if ((l21 = vtkMath::Norm(p21)) == 0.0) { l21 = 1.0; } if ((l31 = vtkMath::Norm(p31)) == 0.0) { l31 = 1.0; } pcoords[0] = vtkMath::Dot(p21, p) / (l21 * l21); pcoords[1] = vtkMath::Dot(p31, p) / (l31 * l31); vtkPixel::InterpolationFunctions(pcoords, weights); if (pcoords[0] >= 0.0 && pcoords[0] <= 1.0 && pcoords[1] >= 0.0 && pcoords[1] <= 1.0) { if (closestPoint) { closestPoint[0] = cp[0]; closestPoint[1] = cp[1]; closestPoint[2] = cp[2]; dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x); // projection distance } return 1; } else { double pc[3], w[4]; if (closestPoint) { for (i = 0; i < 2; i++) { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, static_cast(w)); dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x); } return 0; } } //------------------------------------------------------------------------------ void vtkPixel::EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) { double pt1[3], pt2[3], pt3[3]; int i; subId = 0; this->Points->GetPoint(0, pt1); this->Points->GetPoint(1, pt2); this->Points->GetPoint(2, pt3); for (i = 0; i < 3; i++) { x[i] = pt1[i] + pcoords[0] * (pt2[i] - pt1[i]) + pcoords[1] * (pt3[i] - pt1[i]); } vtkPixel::InterpolationFunctions(pcoords, weights); } //------------------------------------------------------------------------------ int vtkPixel::ComputeNormal(double n[3]) { double p0[3], p1[3], p2[3]; this->Points->GetPoint(0, p0); this->Points->GetPoint(1, p1); this->Points->GetPoint(2, p2); p1[0] -= p0[0]; p1[1] -= p0[1]; p1[2] -= p0[2]; p2[0] -= p0[0]; p2[1] -= p0[1]; p2[2] -= p0[2]; vtkMath::Cross(p1, p2, n); if (std::abs(n[0]) < VTK_DBL_EPSILON && std::abs(n[1]) < VTK_DBL_EPSILON && std::abs(n[2]) < VTK_DBL_EPSILON) { return -1; } vtkMath::Normalize(n); return (std::abs(n[1]) > 0.5) + (std::abs(n[2]) > 0.5) * 2; } //---------------------------------------------------------------------------- int vtkPixel::Inflate(double dist) { auto range = vtk::DataArrayTupleRange<3>(this->Points->GetData()); using TupleRef = typename decltype(range)::TupleReferenceType; using ConstTupleRef = typename decltype(range)::ConstTupleReferenceType; using ConstScalar = typename ConstTupleRef::value_type; ConstTupleRef p0 = range[0], p3 = range[3]; int normalDirection = static_cast(vtkMathUtilities::NearlyEqual(p3[0], p0[0])) | (static_cast(vtkMathUtilities::NearlyEqual(p3[1], p0[1])) << 1) | (static_cast(vtkMathUtilities::NearlyEqual(p3[2], p0[2])) << 2); int degeneratePixelDirection = -1; if (normalDirection == 0x7) { // Pixel is collapsed to a single point return 0; } if ((normalDirection - 1) & normalDirection) { static constexpr std::array myLog2{ -1, 0, 1, -1, 2 }; // Pixel is degenerate, it is homogeneous to a 1D line. degeneratePixelDirection = myLog2[(~normalDirection & 0x7)]; } int index = 0; for (TupleRef point : range) { switch (normalDirection) { case 1: point[1] += dist * (index % 2 ? 1.0 : -1.0); point[2] += dist * (index / 2 ? 1.0 : -1.0); break; case 2: point[0] += dist * (index % 2 ? 1.0 : -1.0); point[2] += dist * (index / 2 ? 1.0 : -1.0); break; case 4: point[0] += dist * (index % 2 ? 1.0 : -1.0); point[1] += dist * (index / 2 ? 1.0 : -1.0); break; default: point[degeneratePixelDirection] += dist * (index % 2 ? 1.0 : -1.0); break; } ++index; } return 1; } //------------------------------------------------------------------------------ double vtkPixel::ComputeBoundingSphere(double center[3]) const { auto points = vtk::DataArrayTupleRange(this->Points->GetData()); auto p0 = points[0], p3 = points[3]; center[0] = 0.5 * (p0[0] + p3[0]); center[1] = 0.5 * (p0[1] + p3[1]); center[2] = 0.5 * (p0[2] + p3[2]); return vtkMath::Distance2BetweenPoints(center, p0); } //---------------------------------------------------------------------------- int vtkPixel::CellBoundary(int vtkNotUsed(subId), const double pcoords[3], vtkIdList* pts) { double t1 = pcoords[0] - pcoords[1]; double t2 = 1.0 - pcoords[0] - pcoords[1]; pts->SetNumberOfIds(2); // compare against two lines in parametric space that divide element // into four pieces. if (t1 >= 0.0 && t2 >= 0.0) { pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(1)); } else if (t1 >= 0.0 && t2 < 0.0) { pts->SetId(0, this->PointIds->GetId(1)); pts->SetId(1, this->PointIds->GetId(3)); } else if (t1 < 0.0 && t2 < 0.0) { pts->SetId(0, this->PointIds->GetId(3)); pts->SetId(1, this->PointIds->GetId(2)); } else //( t1 < 0.0 && t2 >= 0.0 ) { pts->SetId(0, this->PointIds->GetId(2)); pts->SetId(1, this->PointIds->GetId(0)); } if (pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0) { return 0; } else { return 1; } } //------------------------------------------------------------------------------ // // Marching squares // #include "vtkMarchingSquaresLineCases.h" static int edges[4][2] = { { 0, 1 }, { 1, 3 }, { 2, 3 }, { 0, 2 } }; void vtkPixel::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* vtkNotUsed(verts), vtkCellArray* lines, vtkCellArray* vtkNotUsed(polys), vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { static const int CASE_MASK[4] = { 1, 2, 8, 4 }; // note differenceom quad! vtkMarchingSquaresLineCases* lineCase; EDGE_LIST* edge; int i, j, index, *vert; int newCellId; vtkIdType pts[2]; double t, x1[3], x2[3], x[3]; // Build the case table for (i = 0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i, 0) >= value) { index |= CASE_MASK[i]; } } lineCase = vtkMarchingSquaresLineCases::GetCases() + index; edge = lineCase->edges; for (; edge[0] > -1; edge += 2) { for (i = 0; i < 2; i++) // insert line { vert = edges[edge[i]]; t = (value - cellScalars->GetComponent(vert[0], 0)) / (cellScalars->GetComponent(vert[1], 0) - cellScalars->GetComponent(vert[0], 0)); this->Points->GetPoint(vert[0], x1); this->Points->GetPoint(vert[1], x2); for (j = 0; j < 3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if (locator->InsertUniquePoint(x, pts[i])) { if (outPd) { int p1 = this->PointIds->GetId(vert[0]); int p2 = this->PointIds->GetId(vert[1]); outPd->InterpolateEdge(inPd, pts[i], p1, p2, t); } } } // check for degenerate line if (pts[0] != pts[1]) { newCellId = lines->InsertNextCell(2, pts); if (outCd) { outCd->CopyData(inCd, cellId, newCellId); } } } } //------------------------------------------------------------------------------ vtkCell* vtkPixel::GetEdge(int edgeId) { int* verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1, this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1, this->Points->GetPoint(verts[1])); return this->Line; } //------------------------------------------------------------------------------ // // Compute interpolation functions (similar but different than Quad interpolation // functions) // void vtkPixel::InterpolationFunctions(const double pcoords[3], double sf[4]) { double rm, sm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; sf[0] = rm * sm; sf[1] = pcoords[0] * sm; sf[2] = rm * pcoords[1]; sf[3] = pcoords[0] * pcoords[1]; } //------------------------------------------------------------------------------ // // Compute derivatives of interpolation functions. // void vtkPixel::InterpolationDerivs(const double pcoords[3], double derivs[8]) { double rm, sm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; // r derivatives derivs[0] = -sm; derivs[1] = sm; derivs[2] = -pcoords[1]; derivs[3] = pcoords[1]; // s derivatives derivs[4] = -rm; derivs[5] = -pcoords[0]; derivs[6] = rm; derivs[7] = pcoords[0]; } //------------------------------------------------------------------------------ // // Intersect plane; see whether point is inside. // int vtkPixel::IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = 0.0; double pt1[3], pt4[3]; this->Points->GetPoint(0, pt1); this->Points->GetPoint(3, pt4); // // Get normal for triangle // double n[3] = { 0.0, 0.0, 0.0 }; for (int i = 0; i < 3; i++) { if ((pt4[i] - pt1[i]) <= 0.0) { n[i] = 1.0; break; } } // Because vtkPlane::IntersectWithLine cannot handle intersection with finite // plane, we need to handle the coplanar case ourself and find the closest x/t possible. // EvaluatePosition will take care of filling values for subId and pcoords. const double v1[3] = { p1[0] - pt1[0], p1[1] - pt1[1], p1[2] - pt1[2] }; const double v2[3] = { p2[0] - pt1[0], p2[1] - pt1[1], p2[2] - pt1[2] }; bool isCoplanar = (std::abs(vtkMath::Dot(v1, n)) < tol) && (std::abs(vtkMath::Dot(v2, n)) < tol); if (isCoplanar) { // if p1 is inside the pixel then return p1. if (p1[0] <= pt4[0] && p1[0] >= pt1[0] && p1[1] <= pt4[1] && p1[1] >= pt1[1] && p1[2] <= pt4[2] && p1[2] >= pt1[2]) { t = 0; x[0] = p1[0]; x[1] = p1[1]; x[2] = p1[2]; } // Else we check if we intersect any edges. If we dont that means we do not intersect the pixel. else { double mint = VTK_DOUBLE_MAX; double tmpt, tmpx[3], tmppcoords[3]; int tmpid; for (int i = 0; i < 4; ++i) { bool res = this->GetEdge(i)->IntersectWithLine(p1, p2, tol, tmpt, tmpx, tmppcoords, tmpid); if (res && (tmpt < mint)) { mint = tmpt; t = tmpt; x[0] = tmpx[0]; x[1] = tmpx[1]; x[2] = tmpx[2]; } } if (mint == VTK_DOUBLE_MAX) { return 0; } } } else if (!vtkPlane::IntersectWithLine(p1, p2, n, pt1, t, x)) { return 0; } // // Use evaluate position // double closestPoint[3], dist2, weights[4]; return this->EvaluatePosition(x, closestPoint, subId, pcoords, dist2, weights) && (dist2 <= (tol * tol)); } //------------------------------------------------------------------------------ int vtkPixel::Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) { pts->Reset(); ptIds->Reset(); if ((index % 2)) { ptIds->InsertId(0, this->PointIds->GetId(0)); pts->InsertPoint(0, this->Points->GetPoint(0)); ptIds->InsertId(1, this->PointIds->GetId(1)); pts->InsertPoint(1, this->Points->GetPoint(1)); ptIds->InsertId(2, this->PointIds->GetId(2)); pts->InsertPoint(2, this->Points->GetPoint(2)); ptIds->InsertId(3, this->PointIds->GetId(1)); pts->InsertPoint(3, this->Points->GetPoint(1)); ptIds->InsertId(4, this->PointIds->GetId(3)); pts->InsertPoint(4, this->Points->GetPoint(3)); ptIds->InsertId(5, this->PointIds->GetId(2)); pts->InsertPoint(5, this->Points->GetPoint(2)); } else { ptIds->InsertId(0, this->PointIds->GetId(0)); pts->InsertPoint(0, this->Points->GetPoint(0)); ptIds->InsertId(1, this->PointIds->GetId(1)); pts->InsertPoint(1, this->Points->GetPoint(1)); ptIds->InsertId(2, this->PointIds->GetId(3)); pts->InsertPoint(2, this->Points->GetPoint(3)); ptIds->InsertId(3, this->PointIds->GetId(0)); pts->InsertPoint(3, this->Points->GetPoint(0)); ptIds->InsertId(4, this->PointIds->GetId(3)); pts->InsertPoint(4, this->Points->GetPoint(3)); ptIds->InsertId(5, this->PointIds->GetId(2)); pts->InsertPoint(5, this->Points->GetPoint(2)); } return 1; } //------------------------------------------------------------------------------ void vtkPixel::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double functionDerivs[8], sum; int i, j, k, plane, idx[2], jj; double x0[3], x1[3], x2[3], x3[3], spacing[3]; this->Points->GetPoint(0, x0); this->Points->GetPoint(1, x1); this->Points->GetPoint(2, x2); this->Points->GetPoint(3, x3); // figure which plane this pixel is in for (i = 0; i < 3; i++) { spacing[i] = x3[i] - x0[i]; } if (spacing[0] > spacing[2] && spacing[1] > spacing[2]) // z-plane { plane = 2; idx[0] = 0; idx[1] = 1; } else if (spacing[0] > spacing[1] && spacing[2] > spacing[1]) // y-plane { plane = 1; idx[0] = 0; idx[1] = 2; } else // x-plane { plane = 0; idx[0] = 1; idx[1] = 2; } // get derivatives in r-s directions this->InterpolationDerivs(pcoords, functionDerivs); // since two of the x-y-z axes are aligned with r-s axes, only need to scale // the derivative values by the data spacing. for (k = 0; k < dim; k++) // loop over values per vertex { for (jj = j = 0; j < 3; j++) // loop over derivative directions { if (j == plane) // 0-derivate values in this direction { sum = 0.0; } else // compute derivatives { for (sum = 0.0, i = 0; i < 4; i++) // loop over interp. function derivatives { sum += functionDerivs[4 * jj + i] * values[dim * i + k]; } sum /= spacing[idx[jj++]]; } derivs[3 * k + j] = sum; } } } //------------------------------------------------------------------------------ // support pixel clipping typedef int PIXEL_EDGE_LIST; struct PIXEL_CASES_t { PIXEL_EDGE_LIST edges[14]; }; using PIXEL_CASES = struct PIXEL_CASES_t; static PIXEL_CASES pixelCases[] = { { { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 0 { { 3, 100, 0, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 1 { { 3, 101, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 2 { { 4, 100, 101, 1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 3 { { 3, 103, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 4 { { 3, 100, 0, 3, 3, 103, 2, 1, 4, 0, 1, 2, 3, -1 } }, // 5 { { 4, 101, 103, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 6 { { 3, 100, 101, 3, 3, 101, 2, 3, 3, 101, 103, 2, -1, -1 } }, // 7 { { 3, 102, 3, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 8 { { 4, 100, 0, 2, 102, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 9 { { 3, 101, 1, 0, 3, 102, 3, 2, 4, 0, 1, 2, 3, -1 } }, // 10 { { 3, 100, 101, 1, 3, 100, 1, 2, 3, 100, 2, 102, -1, -1 } }, // 11 { { 4, 103, 102, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 12 { { 3, 100, 0, 102, 3, 0, 1, 102, 3, 1, 103, 102, -1, -1 } }, // 13 { { 3, 0, 101, 103, 3, 0, 103, 3, 3, 103, 102, 3, -1, -1 } }, // 14 { { 4, 100, 101, 103, 102, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 15 }; static PIXEL_CASES pixelCasesComplement[] = { { { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 0 { { 3, 100, 0, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 1 { { 3, 101, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 2 { { 4, 100, 101, 1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 3 { { 3, 103, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 4 { { 3, 100, 0, 3, 3, 103, 2, 1, -1, -1, -1, -1, -1, -1 } }, // 5 { { 4, 101, 103, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 6 { { 3, 100, 101, 3, 3, 101, 2, 3, 3, 101, 103, 2, -1, -1 } }, // 7 { { 3, 102, 3, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 8 { { 4, 100, 0, 2, 102, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 9 { { 3, 101, 1, 0, 3, 102, 3, 2, -1, -1, -1, -1, -1, -1 } }, // 10 { { 3, 100, 101, 1, 3, 100, 1, 2, 3, 100, 2, 102, -1, -1 } }, // 11 { { 4, 103, 102, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 12 { { 3, 100, 0, 102, 3, 0, 1, 102, 3, 1, 103, 102, -1, -1 } }, // 13 { { 3, 0, 101, 103, 3, 0, 103, 3, 3, 103, 102, 3, -1, -1 } }, // 14 { { 4, 100, 101, 103, 102, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 15 }; //------------------------------------------------------------------------------ // Clip this pixel using scalar value provided. Like contouring, except // that it cuts the pixel to produce quads and/or triangles. void vtkPixel::Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { static const int CASE_MASK[4] = { 1, 2, 8, 4 }; // note difference from quad! PIXEL_CASES* pixelCase; PIXEL_EDGE_LIST* edge; int i, j, index, *vert; int e1, e2; int newCellId; vtkIdType pts[4]; int vertexId; double t, x1[3], x2[3], x[3], deltaScalar; double scalar0, scalar1, e1Scalar; // Build the index into the case table if (insideOut) { for (i = 0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i, 0) <= value) { index |= CASE_MASK[i]; } } // Select case based on the index and get the list of edges for this case pixelCase = pixelCases + index; } else { for (i = 0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i, 0) > value) { index |= CASE_MASK[i]; } } // Select case based on the index and get the list of edges for this case pixelCase = pixelCasesComplement + index; } edge = pixelCase->edges; // generate each pixel for (; edge[0] > -1; edge += edge[0] + 1) { for (i = 0; i < edge[0]; i++) // insert pixel or triangle { // vertex exists, and need not be interpolated if (edge[i + 1] >= 100) { vertexId = edge[i + 1] - 100; this->Points->GetPoint(vertexId, x); if (locator->InsertUniquePoint(x, pts[i])) { outPd->CopyData(inPd, this->PointIds->GetId(vertexId), pts[i]); } } else // new vertex, interpolate { vert = edges[edge[i + 1]]; // calculate a preferred interpolation direction scalar0 = cellScalars->GetComponent(vert[0], 0); scalar1 = cellScalars->GetComponent(vert[1], 0); deltaScalar = scalar1 - scalar0; if (deltaScalar > 0) { e1 = vert[0]; e2 = vert[1]; e1Scalar = scalar0; } else { e1 = vert[1]; e2 = vert[0]; e1Scalar = scalar1; deltaScalar = -deltaScalar; } // linear interpolation if (deltaScalar == 0.0) { t = 0.0; } else { t = (value - e1Scalar) / deltaScalar; } this->Points->GetPoint(e1, x1); this->Points->GetPoint(e2, x2); for (j = 0; j < 3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if (locator->InsertUniquePoint(x, pts[i])) { int p1 = this->PointIds->GetId(e1); int p2 = this->PointIds->GetId(e2); outPd->InterpolateEdge(inPd, pts[i], p1, p2, t); } } } // check for degenerate output if (edge[0] == 3) // i.e., a triangle { if (pts[0] == pts[1] || pts[0] == pts[2] || pts[1] == pts[2]) { continue; } } else // a pixel { if ((pts[0] == pts[3] && pts[1] == pts[2]) || (pts[0] == pts[1] && pts[3] == pts[2])) { continue; } } newCellId = polys->InsertNextCell(edge[0], pts); outCd->CopyData(inCd, cellId, newCellId); } } //------------------------------------------------------------------------------ static double vtkPixelCellPCoords[12] = { 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0 }; double* vtkPixel::GetParametricCoords() { return vtkPixelCellPCoords; } //------------------------------------------------------------------------------ void vtkPixel::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Line:\n"; this->Line->PrintSelf(os, indent.GetNextIndent()); }