/*========================================================================= Program: Visualization Toolkit Module: vtkPixel.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkPixel * @brief a cell that represents an orthogonal quadrilateral * * vtkPixel is a concrete implementation of vtkCell to represent a 2D * orthogonal quadrilateral. Unlike vtkQuad, the corners are at right angles, * and aligned along x-y-z coordinate axes leading to large increases in * computational efficiency. */ #ifndef vtkPixel_h #define vtkPixel_h #include "vtkCell.h" #include "vtkCommonDataModelModule.h" // For export macro class vtkLine; class vtkIncrementalPointLocator; class VTKCOMMONDATAMODEL_EXPORT vtkPixel : public vtkCell { public: static vtkPixel* New(); vtkTypeMacro(vtkPixel, vtkCell); void PrintSelf(ostream& os, vtkIndent indent) override; ///@{ /** * See the vtkCell API for descriptions of these methods. */ int GetCellType() override { return VTK_PIXEL; } int GetCellDimension() override { return 2; } int GetNumberOfEdges() override { return 4; } int GetNumberOfFaces() override { return 0; } vtkCell* GetEdge(int edgeId) override; vtkCell* GetFace(int) override { return nullptr; } int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override; void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override; void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) override; int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) override; void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override; ///@} /** * Inflates this pixel by a distance of dist by moving the edges of the pixel * by that distance. Since a pixel lies in 3D, the degenerate case where the * pixel is homogeneous to a line are discarted because of normal direction * ambiguity. Hence, if you shrink a 2D pixel so it loses thickness in one * dimension. inflating it back to its previous form is impossible. * * A degenerate pixel of dimension 1 is inflated the same way a segment would be * inflated. A degenerate pixel of dimension 0 is untouched. * * \return 1 */ int Inflate(double dist) override; /** * Computes exact bounding sphere of this pixel. */ double ComputeBoundingSphere(double center[3]) const override; /** * Return the center of the triangle in parametric coordinates. */ int GetParametricCenter(double pcoords[3]) override; int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override; void Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) override; double* GetParametricCoords() override; static void InterpolationFunctions(const double pcoords[3], double weights[4]); static void InterpolationDerivs(const double pcoords[3], double derivs[8]); ///@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(const double pcoords[3], double weights[4]) override { vtkPixel::InterpolationFunctions(pcoords, weights); } void InterpolateDerivs(const double pcoords[3], double derivs[8]) override { vtkPixel::InterpolationDerivs(pcoords, derivs); } ///@} /** * vtkPixel's normal cannot be computed using vtkPolygon::ComputeNormal because * its points are not sorted such that circulating on them forms the pixel. * This is a convenient method so one can compute normals on a pixel. */ int ComputeNormal(double n[3]); protected: vtkPixel(); ~vtkPixel() override; vtkLine* Line; private: vtkPixel(const vtkPixel&) = delete; void operator=(const vtkPixel&) = delete; }; //---------------------------------------------------------------------------- inline int vtkPixel::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = 0.5; pcoords[2] = 0.0; return 0; } #endif