/*========================================================================= Program: Visualization Toolkit Module: vtkPyramid.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkPyramid.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkDoubleArray.h" #include "vtkIncrementalPointLocator.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPolygon.h" #include "vtkQuad.h" #include "vtkTriangle.h" #include "vtkUnstructuredGrid.h" #include #include vtkStandardNewMacro(vtkPyramid); namespace { const double VTK_DIVERGED = 1.e6; const int VTK_MAX_ITERATION = 10; const double VTK_CONVERGED = 1.e-03; } //------------------------------------------------------------------------------ // Marching pyramids (contouring) // namespace { // required so we don't violate ODR // Pyramid topology: // // 3 __ 2 // |\ /| // |4\/ | // | /\ | // |/__\| // 0 1 constexpr vtkIdType edges[vtkPyramid::NumberOfEdges][2] = { { 0, 1 }, // 0 { 1, 2 }, // 1 { 2, 3 }, // 2 { 3, 0 }, // 3 { 0, 4 }, // 4 { 1, 4 }, // 5 { 2, 4 }, // 6 { 3, 4 }, // 7 }; constexpr vtkIdType faces[vtkPyramid::NumberOfFaces][vtkPyramid::MaximumFaceSize + 1] = { { 0, 3, 2, 1, -1 }, // 0 { 0, 1, 4, -1, -1 }, // 1 { 1, 2, 4, -1, -1 }, // 2 { 2, 3, 4, -1, -1 }, // 3 { 3, 0, 4, -1, -1 }, // 4 }; constexpr vtkIdType edgeToAdjacentFaces[vtkPyramid::NumberOfEdges][2] = { { 0, 1 }, // 0 { 0, 2 }, // 1 { 0, 3 }, // 2 { 0, 4 }, // 3 { 1, 4 }, // 4 { 1, 2 }, // 5 { 2, 3 }, // 6 { 3, 4 }, // 7 }; constexpr vtkIdType faceToAdjacentFaces[vtkPyramid::NumberOfFaces][vtkPyramid::MaximumFaceSize] = { { 4, 3, 2, 1 }, // 0 { 0, 2, 4, -1 }, // 1 { 0, 3, 1, -1 }, // 2 { 0, 4, 2, -1 }, // 3 { 0, 1, 3, -1 }, // 4 }; constexpr vtkIdType pointToIncidentEdges[vtkPyramid::NumberOfPoints][vtkPyramid::MaximumValence] = { { 0, 4, 3, -1 }, // 0 { 0, 1, 5, -1 }, // 1 { 1, 2, 6, -1 }, // 2 { 2, 3, 7, -1 }, // 3 { 4, 5, 6, 7 }, // 4 }; constexpr vtkIdType pointToIncidentFaces[vtkPyramid::NumberOfPoints][vtkPyramid::MaximumValence] = { { 1, 4, 0, -1 }, // 0 { 0, 2, 1, -1 }, // 1 { 0, 3, 2, -1 }, // 2 { 0, 4, 3, -1 }, // 3 { 1, 2, 3, 4 }, // 4 }; constexpr vtkIdType pointToOneRingPoints[vtkPyramid::NumberOfPoints][vtkPyramid::MaximumValence] = { { 1, 4, 3, -1 }, // 0 { 0, 2, 4, -1 }, // 1 { 1, 3, 4, -1 }, // 2 { 2, 0, 4, -1 }, // 3 { 0, 1, 2, 3 }, // 4 }; constexpr vtkIdType numberOfPointsInFace[vtkPyramid::NumberOfFaces] = { 4, // 0 3, // 1 3, // 2 3, // 3 3 // 4 }; constexpr vtkIdType valenceAtPoint[vtkPyramid::NumberOfPoints] = { 4, // 0 3, // 1 3, // 2 3, // 3 3 // 4 }; typedef int EDGE_LIST; struct TRIANGLE_CASES_t { EDGE_LIST edges[13]; }; using TRIANGLE_CASES = struct TRIANGLE_CASES_t; TRIANGLE_CASES triCases[] = { { { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 0 { { 3, 4, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 1 { { 5, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 2 { { 5, 1, 4, 1, 3, 4, -1, -1, -1, -1, -1, -1, -1 } }, // 3 { { 6, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 4 { { 3, 4, 0, 6, 2, 1, -1, -1, -1, -1, -1, -1, -1 } }, // 5 { { 5, 2, 0, 6, 2, 5, -1, -1, -1, -1, -1, -1, -1 } }, // 6 { { 2, 3, 4, 2, 4, 6, 4, 5, 6, -1, -1, -1, -1 } }, // 7 { { 2, 7, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 8 { { 2, 7, 4, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1 } }, // 9 { { 5, 1, 0, 2, 7, 3, -1, -1, -1, -1, -1, -1, -1 } }, // 10 { { 5, 7, 4, 1, 7, 5, 2, 7, 1, -1, -1, -1, -1 } }, // 11 { { 6, 3, 1, 7, 3, 6, -1, -1, -1, -1, -1, -1, -1 } }, // 12 { { 4, 6, 7, 0, 6, 4, 1, 6, 0, -1, -1, -1, -1 } }, // 13 { { 7, 5, 6, 3, 5, 7, 0, 5, 3, -1, -1, -1, -1 } }, // 14 { { 7, 4, 5, 7, 5, 6, -1, -1, -1, -1, -1, -1, -1 } }, // 15 { { 7, 5, 4, 7, 6, 5, -1, -1, -1, -1, -1, -1, -1 } }, // 16 { { 5, 0, 3, 6, 5, 3, 7, 6, 3, -1, -1, -1, -1 } }, // 17 { { 1, 0, 4, 7, 1, 4, 6, 1, 7, -1, -1, -1, -1 } }, // 18 { { 6, 1, 3, 7, 6, 3, -1, -1, -1, -1, -1, -1, -1 } }, // 19 { { 7, 5, 4, 7, 1, 5, 7, 2, 1, -1, -1, -1, -1 } }, // 20 { { 3, 7, 0, 7, 5, 0, 7, 2, 5, 2, 1, 5, -1 } }, // 21 { { 4, 2, 0, 7, 2, 4, -1, -1, -1, -1, -1, -1, -1 } }, // 22 { { 7, 2, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 23 { { 2, 4, 3, 5, 4, 2, 6, 5, 2, -1, -1, -1, -1 } }, // 24 { { 2, 5, 0, 2, 6, 5, -1, -1, -1, -1, -1, -1, -1 } }, // 25 { { 6, 1, 0, 4, 6, 0, 3, 6, 4, 3, 2, 6, -1 } }, // 26 { { 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 27 { { 1, 4, 3, 1, 5, 4, -1, -1, -1, -1, -1, -1, -1 } }, // 28 { { 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 29 { { 4, 3, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 30 { { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 31 }; } //------------------------------------------------------------------------------ bool vtkPyramid::GetCentroid(double centroid[3]) const { return vtkPyramid::ComputeCentroid(this->Points, nullptr, centroid); } //------------------------------------------------------------------------------ bool vtkPyramid::ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]) { double p[3]; centroid[0] = centroid[1] = centroid[2] = 0.0; if (!pointIds) { vtkPolygon::ComputeCentroid(points, numberOfPointsInFace[4], faces[4], centroid); points->GetPoint(4, p); } else { vtkIdType facePointsIds[4] = { pointIds[faces[4][0]], pointIds[faces[4][1]], pointIds[faces[4][2]], pointIds[faces[4][3]] }; vtkPolygon::ComputeCentroid(points, numberOfPointsInFace[4], facePointsIds, centroid); points->GetPoint(pointIds[4], p); } centroid[0] += 3 * p[0]; centroid[1] += 3 * p[1]; centroid[2] += 3 * p[2]; centroid[0] *= 0.25; centroid[1] *= 0.25; centroid[2] *= 0.25; return true; } //------------------------------------------------------------------------------ bool vtkPyramid::IsInsideOut() { double n[3], a[3], b[3]; vtkPolygon::ComputeNormal(this->Points, numberOfPointsInFace[4], faces[4], n); this->Points->GetPoint(0, a); this->Points->GetPoint(4, b); b[0] -= a[0]; b[1] -= a[1]; b[2] -= a[2]; return vtkMath::Dot(n, b) > 0.0; } //------------------------------------------------------------------------------ // // Construct the pyramid with five points. // vtkPyramid::vtkPyramid() { this->Points->SetNumberOfPoints(5); this->PointIds->SetNumberOfIds(5); for (int i = 0; i < 5; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i, 0); } this->Line = vtkLine::New(); this->Triangle = vtkTriangle::New(); this->Quad = vtkQuad::New(); } //------------------------------------------------------------------------------ vtkPyramid::~vtkPyramid() { this->Line->Delete(); this->Triangle->Delete(); this->Quad->Delete(); } //------------------------------------------------------------------------------ int vtkPyramid::EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) { subId = 0; // Efficient point access vtkDoubleArray* pointArray = static_cast(this->Points->GetData()); const double* pts = pointArray->GetPointer(0); const double *pt0, *pt1, *tmp; // There are problems searching for the apex point so we check if // we are there first before doing the full parametric inversion. const double* apexPoint = pts + 12; dist2 = vtkMath::Distance2BetweenPoints(apexPoint, x); double baseMidpoint[3]; baseMidpoint[0] = pts[0]; baseMidpoint[1] = pts[1]; baseMidpoint[2] = pts[2]; for (int i = 1; i < 4; i++) { tmp = pts + 3 * i; baseMidpoint[0] += tmp[0]; baseMidpoint[1] += tmp[1]; baseMidpoint[2] += tmp[2]; } for (int i = 0; i < 3; i++) { baseMidpoint[i] /= 4.; } double length2 = vtkMath::Distance2BetweenPoints(apexPoint, baseMidpoint); // we use .001 as the relative tolerance here since that is the same // that is used for the interior cell check below but we need to // square it here because we're looking at dist2^2. if (dist2 == 0. || (length2 != 0. && dist2 / length2 < 1.e-6)) { pcoords[0] = pcoords[1] = 0; pcoords[2] = 1; vtkPyramid::InterpolationFunctions(pcoords, weights); if (closestPoint) { memcpy(closestPoint, x, 3 * sizeof(double)); dist2 = 0.; } return 1; } double derivs[15]; // compute a bound on the volume to get a scale for an acceptable determinant double longestEdge = 0; for (int i = 0; i < 8; i++) { pt0 = pts + 3 * edges[i][0]; pt1 = pts + 3 * edges[i][1]; double d2 = vtkMath::Distance2BetweenPoints(pt0, pt1); if (longestEdge < d2) { longestEdge = d2; } } // longestEdge value is already squared double volumeBound = pow(longestEdge, 1.5); double determinantTolerance = 1e-20 < .00001 * volumeBound ? 1e-20 : .00001 * volumeBound; // set initial position for Newton's method double params[3] = { 0.3333333, 0.3333333, 0.3333333 }; pcoords[0] = pcoords[1] = pcoords[2] = params[0]; // enter iteration loop int converged = 0; for (int iteration = 0; !converged && (iteration < VTK_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives vtkPyramid::InterpolationFunctions(pcoords, weights); vtkPyramid::InterpolationDerivs(pcoords, derivs); // calculate newton functions double fcol[3] = { 0, 0, 0 }, rcol[3] = { 0, 0, 0 }, scol[3] = { 0, 0, 0 }, tcol[3] = { 0, 0, 0 }; for (int i = 0; i < 5; i++) { for (int j = 0; j < 3; j++) { const double coord = pts[3 * i + j]; fcol[j] += coord * weights[i]; rcol[j] += coord * derivs[i]; scol[j] += coord * derivs[i + 5]; tcol[j] += coord * derivs[i + 10]; } } for (int i = 0; i < 3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements double d = vtkMath::Determinant3x3(rcol, scol, tcol); if (fabs(d) < determinantTolerance) { vtkDebugMacro(<< "Determinant incorrect, iteration " << iteration); return -1; } pcoords[0] = params[0] - vtkMath::Determinant3x3(fcol, scol, tcol) / d; pcoords[1] = params[1] - vtkMath::Determinant3x3(rcol, fcol, tcol) / d; pcoords[2] = params[2] - vtkMath::Determinant3x3(rcol, scol, fcol) / d; // check for convergence if (((fabs(pcoords[0] - params[0])) < VTK_CONVERGED) && ((fabs(pcoords[1] - params[1])) < VTK_CONVERGED) && ((fabs(pcoords[2] - params[2])) < VTK_CONVERGED)) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if (!converged) { return -1; } vtkPyramid::InterpolationFunctions(pcoords, weights); // This is correct in that the XY parametric coordinate plane "shrinks" // while Z increases and X and Y always are between 0 and 1. if (pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; } dist2 = 0.0; // inside pyramid return 1; } else { double pc[3], w[5]; if (closestPoint) { for (int i = 0; i < 3; i++) // only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, static_cast(w)); dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x); } return 0; } } //------------------------------------------------------------------------------ void vtkPyramid::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { int i, j; double pt[3]; vtkPyramid::InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i = 0; i < 5; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 3; j++) { x[j] += pt[j] * weights[i]; } } } //------------------------------------------------------------------------------ // Returns the closest face to the point specified. Closeness is measured // parametrically. int vtkPyramid::CellBoundary(int vtkNotUsed(subId), const double pcoords[3], vtkIdList* pts) { int i; // define 6 planes that separate regions static double normals[6][3] = { { 0.0, -0.5547002, 0.8320503 }, { 0.5547002, 0.0, 0.8320503 }, { 0.0, 0.5547002, 0.8320503 }, { -0.5547002, 0.0, 0.8320503 }, { 0.70710670, -0.70710670, 0.0 }, { 0.70710670, 0.70710670, 0.0 } }; static double point[3] = { 0.5, 0.5, 0.3333333 }; double vals[6]; // evaluate 6 plane equations for (i = 0; i < 6; i++) { vals[i] = normals[i][0] * (pcoords[0] - point[0]) + normals[i][1] * (pcoords[1] - point[1]) + normals[i][2] * (pcoords[2] - point[2]); } // compare against six planes in parametric space that divide element // into five pieces (each corresponding to a face). if (vals[4] >= 0.0 && vals[5] <= 0.0 && vals[0] >= 0.0) { pts->SetNumberOfIds(3); // triangle face pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(1)); pts->SetId(2, this->PointIds->GetId(4)); } else if (vals[4] >= 0.0 && vals[5] >= 0.0 && vals[1] >= 0.0) { pts->SetNumberOfIds(3); // triangle face pts->SetId(0, this->PointIds->GetId(1)); pts->SetId(1, this->PointIds->GetId(2)); pts->SetId(2, this->PointIds->GetId(4)); } else if (vals[4] <= 0.0 && vals[5] >= 0.0 && vals[2] >= 0.0) { pts->SetNumberOfIds(3); // triangle face pts->SetId(0, this->PointIds->GetId(2)); pts->SetId(1, this->PointIds->GetId(3)); pts->SetId(2, this->PointIds->GetId(4)); } else if (vals[4] <= 0.0 && vals[5] <= 0.0 && vals[3] >= 0.0) { pts->SetNumberOfIds(3); // triangle face pts->SetId(0, this->PointIds->GetId(3)); pts->SetId(1, this->PointIds->GetId(0)); pts->SetId(2, this->PointIds->GetId(4)); } else { pts->SetNumberOfIds(4); // quad face pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(1)); pts->SetId(2, this->PointIds->GetId(2)); pts->SetId(3, this->PointIds->GetId(3)); } if (pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 || pcoords[2] < 0.0 || pcoords[2] > 1.0) { return 0; } else { return 1; } } //------------------------------------------------------------------------------ void vtkPyramid::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { static const int CASE_MASK[5] = { 1, 2, 4, 8, 16 }; TRIANGLE_CASES* triCase; EDGE_LIST* edge; int i, j, index, v1, v2, newCellId; const vtkIdType* vert; vtkIdType pts[3]; double t, x1[3], x2[3], x[3], deltaScalar; vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells(); // Build the case table for (i = 0, index = 0; i < 5; i++) { if (cellScalars->GetComponent(i, 0) >= value) { index |= CASE_MASK[i]; } } triCase = triCases + index; edge = triCase->edges; for (; edge[0] > -1; edge += 3) { for (i = 0; i < 3; i++) // insert triangle { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1], 0) - cellScalars->GetComponent(vert[0], 0)); if (deltaScalar > 0) { v1 = vert[0]; v2 = vert[1]; } else { v1 = vert[1]; v2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation t = (deltaScalar == 0.0 ? 0.0 : (value - cellScalars->GetComponent(v1, 0)) / deltaScalar); this->Points->GetPoint(v1, x1); this->Points->GetPoint(v2, x2); for (j = 0; j < 3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if (locator->InsertUniquePoint(x, pts[i])) { if (outPd) { vtkIdType p1 = this->PointIds->GetId(v1); vtkIdType p2 = this->PointIds->GetId(v2); outPd->InterpolateEdge(inPd, pts[i], p1, p2, t); } } } // check for degenerate triangle if (pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2]) { newCellId = offset + polys->InsertNextCell(3, pts); if (outCd) { outCd->CopyData(inCd, cellId, newCellId); } } } } //------------------------------------------------------------------------------ // Return the case table for table-based isocontouring (aka marching cubes // style implementations). A linear 3D cell with N vertices will have 2**N // cases. The cases list three edges in order to produce one output triangle. int* vtkPyramid::GetTriangleCases(int caseId) { return triCases[caseId].edges; } //------------------------------------------------------------------------------ const vtkIdType* vtkPyramid::GetEdgeToAdjacentFacesArray(vtkIdType edgeId) { assert(edgeId < vtkPyramid::NumberOfEdges && "edgeId too large"); return edgeToAdjacentFaces[edgeId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkPyramid::GetFaceToAdjacentFacesArray(vtkIdType faceId) { assert(faceId < vtkPyramid::NumberOfFaces && "faceId too large"); return faceToAdjacentFaces[faceId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkPyramid::GetPointToIncidentEdgesArray(vtkIdType pointId) { assert(pointId < vtkPyramid::NumberOfPoints && "pointId too large"); return pointToIncidentEdges[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkPyramid::GetPointToIncidentFacesArray(vtkIdType pointId) { assert(pointId < vtkPyramid::NumberOfPoints && "pointId too large"); return pointToIncidentFaces[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkPyramid::GetPointToOneRingPointsArray(vtkIdType pointId) { assert(pointId < vtkPyramid::NumberOfPoints && "pointId too large"); return pointToOneRingPoints[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkPyramid::GetEdgeArray(vtkIdType edgeId) { assert(edgeId < vtkPyramid::NumberOfEdges && "edgeId too large"); return edges[edgeId]; } //------------------------------------------------------------------------------ vtkCell* vtkPyramid::GetEdge(int edgeId) { const vtkIdType* verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1, this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1, this->Points->GetPoint(verts[1])); return this->Line; } //------------------------------------------------------------------------------ const vtkIdType* vtkPyramid::GetFaceArray(vtkIdType faceId) { assert(faceId < vtkPyramid::NumberOfFaces && "faceId too large"); return faces[faceId]; } //------------------------------------------------------------------------------ vtkCell* vtkPyramid::GetFace(int faceId) { const vtkIdType* verts; verts = faces[faceId]; if (verts[3] != -1) // quad cell { // load point id's this->Quad->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Quad->PointIds->SetId(1, this->PointIds->GetId(verts[1])); this->Quad->PointIds->SetId(2, this->PointIds->GetId(verts[2])); this->Quad->PointIds->SetId(3, this->PointIds->GetId(verts[3])); // load coordinates this->Quad->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Quad->Points->SetPoint(1, this->Points->GetPoint(verts[1])); this->Quad->Points->SetPoint(2, this->Points->GetPoint(verts[2])); this->Quad->Points->SetPoint(3, this->Points->GetPoint(verts[3])); return this->Quad; } else { // load point id's this->Triangle->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Triangle->PointIds->SetId(1, this->PointIds->GetId(verts[1])); this->Triangle->PointIds->SetId(2, this->PointIds->GetId(verts[2])); // load coordinates this->Triangle->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Triangle->Points->SetPoint(1, this->Points->GetPoint(verts[1])); this->Triangle->Points->SetPoint(2, this->Points->GetPoint(verts[2])); return this->Triangle; } } //------------------------------------------------------------------------------ // Intersect faces against line. // int vtkPyramid::IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { int intersection = 0; double pt1[3], pt2[3], pt3[3], pt4[3]; double tTemp; double pc[3], xTemp[3], dist2, weights[5]; int faceNum; t = VTK_DOUBLE_MAX; // first intersect the triangle faces for (faceNum = 1; faceNum < 5; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Triangle->Points->SetPoint(0, pt1); this->Triangle->Points->SetPoint(1, pt2); this->Triangle->Points->SetPoint(2, pt3); if (this->Triangle->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId)) { intersection = 1; if (tTemp < t) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; this->EvaluatePosition(x, xTemp, subId, pcoords, dist2, weights); } } } // now intersect the quad face this->Points->GetPoint(faces[0][0], pt1); this->Points->GetPoint(faces[0][1], pt2); this->Points->GetPoint(faces[0][2], pt3); this->Points->GetPoint(faces[0][3], pt4); this->Quad->Points->SetPoint(0, pt1); this->Quad->Points->SetPoint(1, pt2); this->Quad->Points->SetPoint(2, pt3); this->Quad->Points->SetPoint(3, pt4); if (this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId)) { intersection = 1; if (tTemp < t) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; } } return intersection; } //------------------------------------------------------------------------------ int vtkPyramid::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts) { int p[4], i; ptIds->Reset(); pts->Reset(); // The base of the pyramid must be split into two triangles. There are two // ways to do this (across either diagonal). Pick the shorter diagonal. double base_points[4][3]; for (i = 0; i < 4; i++) { this->Points->GetPoint(i, base_points[i]); } double diagonal1, diagonal2; diagonal1 = vtkMath::Distance2BetweenPoints(base_points[0], base_points[2]); diagonal2 = vtkMath::Distance2BetweenPoints(base_points[1], base_points[3]); if (diagonal1 < diagonal2) { for (i = 0; i < 4; i++) { p[0] = 0; p[1] = 1; p[2] = 2; p[3] = 4; ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } for (i = 0; i < 4; i++) { p[0] = 0; p[1] = 2; p[2] = 3; p[3] = 4; ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } else { for (i = 0; i < 4; i++) { p[0] = 0; p[1] = 1; p[2] = 3; p[3] = 4; ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } for (i = 0; i < 4; i++) { p[0] = 1; p[1] = 2; p[2] = 3; p[3] = 4; ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } return !(diagonal1 == diagonal2); } //------------------------------------------------------------------------------ void vtkPyramid::Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) { if (pcoords[2] > .999) { // If we are at the apex of the pyramid we need to do something special. // As we approach the apex, the derivatives of the parametric shape // functions in x and y go to 0 while the inverse of the Jacobian // also goes to 0. This results in 0/0 but using l'Hopital's rule // we could actually compute the value of the limit, if we had a // functional expression to compute the gradient. We're on a computer // so we don't but we can cheat and do a linear extrapolation of the // derivatives which really ends up as the same thing. double pcoords1[3] = { .5, .5, 2. * .998 - pcoords[2] }; std::vector derivs1(3 * dim); this->Derivatives(subId, pcoords1, values, dim, &(derivs1[0])); double pcoords2[3] = { .5, .5, .998 }; std::vector derivs2(3 * dim); this->Derivatives(subId, pcoords2, values, dim, &(derivs2[0])); for (int i = 0; i < dim * 3; i++) { derivs[i] = 2. * derivs2[i] - derivs1[i]; } return; } double functionDerivs[15], sum[3], value; int i, j, k; double *jI[3], j0[3], j1[3], j2[3]; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k = 0; k < dim; k++) // loop over values per point { sum[0] = sum[1] = sum[2] = 0.0; for (i = 0; i < 5; i++) // loop over interp. function derivatives { value = values[dim * i + k]; sum[0] += functionDerivs[i] * value; sum[1] += functionDerivs[5 + i] * value; sum[2] += functionDerivs[10 + i] * value; } for (j = 0; j < 3; j++) // loop over derivative directions { derivs[3 * k + j] = sum[0] * jI[j][0] + sum[1] * jI[j][1] + sum[2] * jI[j][2]; } } } //------------------------------------------------------------------------------ // Compute iso-parametric interpolation functions for pyramid // void vtkPyramid::InterpolationFunctions(const double pcoords[3], double sf[5]) { double rm, sm, tm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; tm = 1. - pcoords[2]; sf[0] = rm * sm * tm; sf[1] = pcoords[0] * sm * tm; sf[2] = pcoords[0] * pcoords[1] * tm; sf[3] = rm * pcoords[1] * tm; sf[4] = pcoords[2]; } //------------------------------------------------------------------------------ void vtkPyramid::InterpolationDerivs(const double pcoords[3], double derivs[15]) { double rm, sm, tm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; tm = 1. - pcoords[2]; // r-derivatives derivs[0] = -sm * tm; derivs[1] = sm * tm; derivs[2] = pcoords[1] * tm; derivs[3] = -pcoords[1] * tm; derivs[4] = 0.0; // s-derivatives derivs[5] = -rm * tm; derivs[6] = -pcoords[0] * tm; derivs[7] = pcoords[0] * tm; derivs[8] = rm * tm; derivs[9] = 0.0; // t-derivatives derivs[10] = -rm * sm; derivs[11] = -pcoords[0] * sm; derivs[12] = -pcoords[0] * pcoords[1]; derivs[13] = -rm * pcoords[1]; derivs[14] = 1.0; } //------------------------------------------------------------------------------ // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. Returns 0 if no inverse exists. // Note for pyramid: the inverse Jacobian is undefined at the apex. int vtkPyramid::JacobianInverse(const double pcoords[3], double** inverse, double derivs[15]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i = 0; i < 3; i++) // initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for (j = 0; j < 5; j++) { this->Points->GetPoint(j, x); for (i = 0; i < 3; i++) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[5 + j]; m2[i] += x[i] * derivs[10 + j]; } } // now find the inverse if (vtkMath::InvertMatrix(m, inverse, 3) == 0) { vtkErrorMacro(<< "Jacobian inverse not found" << "Matrix:" << m[0][0] << " " << m[0][1] << " " << m[0][2] << m[1][0] << " " << m[1][1] << " " << m[1][2] << m[2][0] << " " << m[2][1] << " " << m[2][2]); return 0; } return 1; } //------------------------------------------------------------------------------ vtkIdType vtkPyramid::GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) { assert(pointId < vtkPyramid::NumberOfPoints && "pointId too large"); pts = pointToOneRingPoints[pointId]; return valenceAtPoint[pointId]; } //------------------------------------------------------------------------------ vtkIdType vtkPyramid::GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) { assert(pointId < vtkPyramid::NumberOfPoints && "pointId too large"); faceIds = pointToIncidentFaces[pointId]; return valenceAtPoint[pointId]; } //------------------------------------------------------------------------------ vtkIdType vtkPyramid::GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) { assert(pointId < vtkPyramid::NumberOfPoints && "pointId too large"); edgeIds = pointToIncidentEdges[pointId]; return valenceAtPoint[pointId]; } //------------------------------------------------------------------------------ vtkIdType vtkPyramid::GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) { assert(faceId < vtkPyramid::NumberOfFaces && "faceId too large"); faceIds = faceToAdjacentFaces[faceId]; return numberOfPointsInFace[faceId]; } //------------------------------------------------------------------------------ void vtkPyramid::GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) { assert(edgeId < vtkPyramid::NumberOfEdges && "edgeId too large"); pts = edgeToAdjacentFaces[edgeId]; } //------------------------------------------------------------------------------ void vtkPyramid::GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) { assert(edgeId < vtkPyramid::NumberOfEdges && "edgeId too large"); pts = this->GetEdgeArray(edgeId); } //------------------------------------------------------------------------------ vtkIdType vtkPyramid::GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) { assert(faceId < vtkPyramid::NumberOfFaces && "faceId too large"); pts = this->GetFaceArray(faceId); return numberOfPointsInFace[faceId]; } // The choice of the parametric coord for the top corner of the pyramid // is not unique and is defined by (a, b, 1.), where a, b in [0., 1.]. // In the current implementation, it is arbitrary defined to (0., 0., 1.). static double vtkPyramidCellPCoords[15] = { 0.0, 0.0, 0.0, // 1.0, 0.0, 0.0, // 1.0, 1.0, 0.0, // 0.0, 1.0, 0.0, // 0.0, 0.0, 1.0 // }; //------------------------------------------------------------------------------ double* vtkPyramid::GetParametricCoords() { return vtkPyramidCellPCoords; } //------------------------------------------------------------------------------ void vtkPyramid::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Line:\n"; this->Line->PrintSelf(os, indent.GetNextIndent()); os << indent << "Triangle:\n"; this->Triangle->PrintSelf(os, indent.GetNextIndent()); os << indent << "Quad:\n"; this->Quad->PrintSelf(os, indent.GetNextIndent()); }