/*========================================================================= Program: Visualization Toolkit Module: vtkQuad.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkQuad.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkIncrementalPointLocator.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPlane.h" #include "vtkPointData.h" #include "vtkPoints.h" #include "vtkTriangle.h" vtkStandardNewMacro(vtkQuad); static const double VTK_DIVERGED = 1.e6; //------------------------------------------------------------------------------ struct IntersectionStruct { bool Intersected = false; int SubId = -1; double X[3] = { 0.0, 0.0, 0.0 }; double PCoords[3] = { 0.0, 0.0, 0.0 }; double T = -1.0; operator bool() { return this->Intersected; } void CopyValues(double& t, double* x, double* pcoords, int& subId) const { t = this->T; subId = this->SubId; for (int i = 0; i < 3; ++i) { x[i] = this->X[i]; pcoords[i] = this->PCoords[i]; } } static IntersectionStruct CellIntersectWithLine( vtkCell* cell, const double* p1, const double* p2, double tol) { IntersectionStruct res; res.Intersected = cell->IntersectWithLine(p1, p2, tol, res.T, res.X, res.PCoords, res.SubId); return res; } }; //------------------------------------------------------------------------------ // Construct the quad with four points. vtkQuad::vtkQuad() { this->Points->SetNumberOfPoints(4); this->PointIds->SetNumberOfIds(4); for (int i = 0; i < 4; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i, 0); } this->Line = vtkLine::New(); this->Triangle = vtkTriangle::New(); } //------------------------------------------------------------------------------ vtkQuad::~vtkQuad() { this->Line->Delete(); this->Triangle->Delete(); } //------------------------------------------------------------------------------ static const int VTK_QUAD_MAX_ITERATION = 20; static const double VTK_QUAD_CONVERGED = 1.e-04; inline static void ComputeNormal( vtkQuad* self, double pt1[3], double pt2[3], double pt3[3], double n[3]) { vtkTriangle::ComputeNormal(pt1, pt2, pt3, n); // If first three points are co-linear, then use fourth point // double pt4[3]; if (n[0] == 0.0 && n[1] == 0.0 && n[2] == 0.0) { self->Points->GetPoint(3, pt4); vtkTriangle::ComputeNormal(pt2, pt3, pt4, n); } } //------------------------------------------------------------------------------ int vtkQuad::EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) { int i, j; double pt1[3], pt2[3], pt3[3], pt[3], n[3]; double det; double maxComponent; int idx = 0, indices[2]; int iteration, converged; double params[2]; double fcol[2], rcol[2], scol[2], cp[3]; double derivs[8]; subId = 0; pcoords[0] = pcoords[1] = params[0] = params[1] = 0.5; pcoords[2] = 0.0; // Get normal for quadrilateral // this->Points->GetPoint(0, pt1); this->Points->GetPoint(1, pt2); this->Points->GetPoint(2, pt3); ComputeNormal(this, pt1, pt2, pt3, n); // Project point to plane // vtkPlane::ProjectPoint(x, pt1, n, cp); // Construct matrices. Since we have over determined system, need to find // which 2 out of 3 equations to use to develop equations. (Any 2 should // work since we've projected point to plane.) // for (maxComponent = 0.0, i = 0; i < 3; i++) { if (fabs(n[i]) > maxComponent) { maxComponent = fabs(n[i]); idx = i; } } for (j = 0, i = 0; i < 3; i++) { if (i != idx) { indices[j++] = i; } } // Use Newton's method to solve for parametric coordinates // for (iteration = converged = 0; !converged && (iteration < VTK_QUAD_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives // vtkQuad::InterpolationFunctions(pcoords, weights); vtkQuad::InterpolationDerivs(pcoords, derivs); // calculate newton functions // for (i = 0; i < 2; i++) { fcol[i] = rcol[i] = scol[i] = 0.0; } for (i = 0; i < 4; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 2; j++) { fcol[j] += pt[indices[j]] * weights[i]; rcol[j] += pt[indices[j]] * derivs[i]; scol[j] += pt[indices[j]] * derivs[i + 4]; } } for (j = 0; j < 2; j++) { fcol[j] -= cp[indices[j]]; } // compute determinants and generate improvements // if ((det = vtkMath::Determinant2x2(rcol, scol)) == 0.0) { return -1; } pcoords[0] = params[0] - vtkMath::Determinant2x2(fcol, scol) / det; pcoords[1] = params[1] - vtkMath::Determinant2x2(rcol, fcol) / det; // check for convergence // if (((fabs(pcoords[0] - params[0])) < VTK_QUAD_CONVERGED) && ((fabs(pcoords[1] - params[1])) < VTK_QUAD_CONVERGED)) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat // else { params[0] = pcoords[0]; params[1] = pcoords[1]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element // if (!converged) { return -1; } vtkQuad::InterpolationFunctions(pcoords, weights); if (pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001) { if (closestPoint) { dist2 = vtkMath::Distance2BetweenPoints(cp, x); // projection distance closestPoint[0] = cp[0]; closestPoint[1] = cp[1]; closestPoint[2] = cp[2]; } return 1; } else { double t; double pt4[3]; if (closestPoint) { this->Points->GetPoint(3, pt4); if (pcoords[0] < 0.0 && pcoords[1] < 0.0) { dist2 = vtkMath::Distance2BetweenPoints(x, pt1); for (i = 0; i < 3; i++) { closestPoint[i] = pt1[i]; } } else if (pcoords[0] > 1.0 && pcoords[1] < 0.0) { dist2 = vtkMath::Distance2BetweenPoints(x, pt2); for (i = 0; i < 3; i++) { closestPoint[i] = pt2[i]; } } else if (pcoords[0] > 1.0 && pcoords[1] > 1.0) { dist2 = vtkMath::Distance2BetweenPoints(x, pt3); for (i = 0; i < 3; i++) { closestPoint[i] = pt3[i]; } } else if (pcoords[0] < 0.0 && pcoords[1] > 1.0) { dist2 = vtkMath::Distance2BetweenPoints(x, pt4); for (i = 0; i < 3; i++) { closestPoint[i] = pt4[i]; } } else if (pcoords[0] < 0.0) { dist2 = vtkLine::DistanceToLine(x, pt1, pt4, t, closestPoint); } else if (pcoords[0] > 1.0) { dist2 = vtkLine::DistanceToLine(x, pt2, pt3, t, closestPoint); } else if (pcoords[1] < 0.0) { dist2 = vtkLine::DistanceToLine(x, pt1, pt2, t, closestPoint); } else if (pcoords[1] > 1.0) { dist2 = vtkLine::DistanceToLine(x, pt3, pt4, t, closestPoint); } } return 0; } } //------------------------------------------------------------------------------ void vtkQuad::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { int i, j; double pt[3]; vtkQuad::InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i = 0; i < 4; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 3; j++) { x[j] += pt[j] * weights[i]; } } } //------------------------------------------------------------------------------ // Compute iso-parametric interpolation functions // void vtkQuad::InterpolationFunctions(const double pcoords[3], double sf[4]) { double rm, sm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; sf[0] = rm * sm; sf[1] = pcoords[0] * sm; sf[2] = pcoords[0] * pcoords[1]; sf[3] = rm * pcoords[1]; } //------------------------------------------------------------------------------ void vtkQuad::InterpolationDerivs(const double pcoords[3], double derivs[8]) { double rm, sm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; derivs[0] = -sm; derivs[1] = sm; derivs[2] = pcoords[1]; derivs[3] = -pcoords[1]; derivs[4] = -rm; derivs[5] = -pcoords[0]; derivs[6] = pcoords[0]; derivs[7] = rm; } //------------------------------------------------------------------------------ int vtkQuad::CellBoundary(int vtkNotUsed(subId), const double pcoords[3], vtkIdList* pts) { double t1 = pcoords[0] - pcoords[1]; double t2 = 1.0 - pcoords[0] - pcoords[1]; pts->SetNumberOfIds(2); // compare against two lines in parametric space that divide element // into four pieces. if (t1 >= 0.0 && t2 >= 0.0) { pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(1)); } else if (t1 >= 0.0 && t2 < 0.0) { pts->SetId(0, this->PointIds->GetId(1)); pts->SetId(1, this->PointIds->GetId(2)); } else if (t1 < 0.0 && t2 < 0.0) { pts->SetId(0, this->PointIds->GetId(2)); pts->SetId(1, this->PointIds->GetId(3)); } else //( t1 < 0.0 && t2 >= 0.0 ) { pts->SetId(0, this->PointIds->GetId(3)); pts->SetId(1, this->PointIds->GetId(0)); } if (pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0) { return 0; } else { return 1; } } //------------------------------------------------------------------------------ // Marching (convex) quadrilaterals // namespace { // required so we don't violate ODR constexpr vtkIdType edges[4][2] = { { 0, 1 }, { 1, 2 }, { 3, 2 }, { 0, 3 }, }; typedef int EDGE_LIST; struct LINE_CASES_t { EDGE_LIST edges[5]; }; using LINE_CASES = struct LINE_CASES_t; LINE_CASES lineCases[] = { { { -1, -1, -1, -1, -1 } }, { { 0, 3, -1, -1, -1 } }, { { 1, 0, -1, -1, -1 } }, { { 1, 3, -1, -1, -1 } }, { { 2, 1, -1, -1, -1 } }, { { 0, 3, 2, 1, -1 } }, { { 2, 0, -1, -1, -1 } }, { { 2, 3, -1, -1, -1 } }, { { 3, 2, -1, -1, -1 } }, { { 0, 2, -1, -1, -1 } }, { { 1, 0, 3, 2, -1 } }, { { 1, 2, -1, -1, -1 } }, { { 3, 1, -1, -1, -1 } }, { { 0, 1, -1, -1, -1 } }, { { 3, 0, -1, -1, -1 } }, { { -1, -1, -1, -1, -1 } }, }; } //------------------------------------------------------------------------------ const vtkIdType* vtkQuad::GetEdgeArray(vtkIdType edgeId) { return edges[edgeId]; } //------------------------------------------------------------------------------ void vtkQuad::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* vtkNotUsed(polys), vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { static const int CASE_MASK[4] = { 1, 2, 4, 8 }; LINE_CASES* lineCase; EDGE_LIST* edge; int i, j, index; const vtkIdType* vert; int newCellId; vtkIdType pts[2]; int e1, e2; double t, x1[3], x2[3], x[3], deltaScalar; vtkIdType offset = verts->GetNumberOfCells(); // Build the case table for (i = 0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i, 0) >= value) { index |= CASE_MASK[i]; } } lineCase = lineCases + index; edge = lineCase->edges; for (; edge[0] > -1; edge += 2) { for (i = 0; i < 2; i++) // insert line { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1], 0) - cellScalars->GetComponent(vert[0], 0)); if (deltaScalar > 0) { e1 = vert[0]; e2 = vert[1]; } else { e1 = vert[1]; e2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation if (deltaScalar == 0.0) { t = 0.0; } else { t = (value - cellScalars->GetComponent(e1, 0)) / deltaScalar; } this->Points->GetPoint(e1, x1); this->Points->GetPoint(e2, x2); for (j = 0; j < 3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if (locator->InsertUniquePoint(x, pts[i])) { if (outPd) { vtkIdType p1 = this->PointIds->GetId(e1); vtkIdType p2 = this->PointIds->GetId(e2); outPd->InterpolateEdge(inPd, pts[i], p1, p2, t); } } } // check for degenerate line if (pts[0] != pts[1]) { newCellId = offset + lines->InsertNextCell(2, pts); if (outCd) { outCd->CopyData(inCd, cellId, newCellId); } } } } //------------------------------------------------------------------------------ vtkCell* vtkQuad::GetEdge(int edgeId) { int edgeIdPlus1 = edgeId + 1; if (edgeIdPlus1 > 3) { edgeIdPlus1 = 0; } // load point id's this->Line->PointIds->SetId(0, this->PointIds->GetId(edgeId)); this->Line->PointIds->SetId(1, this->PointIds->GetId(edgeIdPlus1)); // load coordinates this->Line->Points->SetPoint(0, this->Points->GetPoint(edgeId)); this->Line->Points->SetPoint(1, this->Points->GetPoint(edgeIdPlus1)); return this->Line; } //------------------------------------------------------------------------------ // Intersect plane; see whether point is in quadrilateral. This code // splits the quad into two triangles and intersects them (because the // quad may be non-planar). // int vtkQuad::IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { int diagonalCase; double d1 = vtkMath::Distance2BetweenPoints(this->Points->GetPoint(0), this->Points->GetPoint(2)); double d2 = vtkMath::Distance2BetweenPoints(this->Points->GetPoint(1), this->Points->GetPoint(3)); subId = 0; // Figure out how to uniquely tessellate the quad. Watch out for // equivalent triangulations (i.e., the triangulation is equivalent // no matter where the diagonal). In this case use the point ids as // a tie breaker to ensure unique triangulation across the quad. // if (d1 == d2) // rare case; discriminate based on point id { int i, id, maxId = 0, maxIdx = 0; for (i = 0; i < 4; i++) // find the maximum id { if ((id = this->PointIds->GetId(i)) > maxId) { maxId = id; maxIdx = i; } } if (maxIdx == 0 || maxIdx == 2) diagonalCase = 0; else diagonalCase = 1; } else if (d1 < d2) { diagonalCase = 0; } else // d2 < d1 { diagonalCase = 1; } // Note: in the following code the parametric coords must be adjusted to // reflect the use of the triangle parametric coordinate system. IntersectionStruct res; switch (diagonalCase) { case 0: { this->Triangle->Points->SetPoint(0, this->Points->GetPoint(0)); this->Triangle->Points->SetPoint(1, this->Points->GetPoint(1)); this->Triangle->Points->SetPoint(2, this->Points->GetPoint(2)); IntersectionStruct firstIntersect = IntersectionStruct::CellIntersectWithLine(this->Triangle, p1, p2, tol); this->Triangle->Points->SetPoint(0, this->Points->GetPoint(2)); this->Triangle->Points->SetPoint(1, this->Points->GetPoint(3)); this->Triangle->Points->SetPoint(2, this->Points->GetPoint(0)); IntersectionStruct secondIntersect = IntersectionStruct::CellIntersectWithLine(this->Triangle, p1, p2, tol); bool useFirstIntersection = (firstIntersect && secondIntersect) ? (firstIntersect.T <= secondIntersect.T) : firstIntersect; bool useSecondIntersection = (firstIntersect && secondIntersect) ? (secondIntersect.T < firstIntersect.T) : secondIntersect; if (useFirstIntersection) { res = firstIntersect; res.PCoords[0] += res.PCoords[1]; } else if (useSecondIntersection) { res = secondIntersect; res.PCoords[0] = 1.0 - (res.PCoords[0] + res.PCoords[1]); res.PCoords[1] = 1.0 - res.PCoords[1]; } } break; case 1: { this->Triangle->Points->SetPoint(0, this->Points->GetPoint(0)); this->Triangle->Points->SetPoint(1, this->Points->GetPoint(1)); this->Triangle->Points->SetPoint(2, this->Points->GetPoint(3)); IntersectionStruct firstIntersect = IntersectionStruct::CellIntersectWithLine(this->Triangle, p1, p2, tol); this->Triangle->Points->SetPoint(0, this->Points->GetPoint(2)); this->Triangle->Points->SetPoint(1, this->Points->GetPoint(3)); this->Triangle->Points->SetPoint(2, this->Points->GetPoint(1)); IntersectionStruct secondIntersect = IntersectionStruct::CellIntersectWithLine(this->Triangle, p1, p2, tol); bool useFirstIntersection = (firstIntersect && secondIntersect) ? (firstIntersect.T <= secondIntersect.T) : firstIntersect; bool useSecondIntersection = (firstIntersect && secondIntersect) ? (secondIntersect.T < firstIntersect.T) : secondIntersect; if (useFirstIntersection) { res = firstIntersect; } else if (useSecondIntersection) { res = secondIntersect; res.PCoords[0] = 1.0 - res.PCoords[0]; res.PCoords[1] = 1.0 - res.PCoords[1]; } } break; } if (res) { res.CopyValues(t, x, pcoords, subId); } return res.Intersected; } //------------------------------------------------------------------------------ int vtkQuad::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts) { double d1, d2; pts->Reset(); ptIds->Reset(); // use minimum diagonal (Delaunay triangles) - assumed convex d1 = vtkMath::Distance2BetweenPoints(this->Points->GetPoint(0), this->Points->GetPoint(2)); d2 = vtkMath::Distance2BetweenPoints(this->Points->GetPoint(1), this->Points->GetPoint(3)); if (d1 <= d2) { ptIds->InsertId(0, this->PointIds->GetId(0)); pts->InsertPoint(0, this->Points->GetPoint(0)); ptIds->InsertId(1, this->PointIds->GetId(1)); pts->InsertPoint(1, this->Points->GetPoint(1)); ptIds->InsertId(2, this->PointIds->GetId(2)); pts->InsertPoint(2, this->Points->GetPoint(2)); ptIds->InsertId(3, this->PointIds->GetId(0)); pts->InsertPoint(3, this->Points->GetPoint(0)); ptIds->InsertId(4, this->PointIds->GetId(2)); pts->InsertPoint(4, this->Points->GetPoint(2)); ptIds->InsertId(5, this->PointIds->GetId(3)); pts->InsertPoint(5, this->Points->GetPoint(3)); } else { ptIds->InsertId(0, this->PointIds->GetId(0)); pts->InsertPoint(0, this->Points->GetPoint(0)); ptIds->InsertId(1, this->PointIds->GetId(1)); pts->InsertPoint(1, this->Points->GetPoint(1)); ptIds->InsertId(2, this->PointIds->GetId(3)); pts->InsertPoint(2, this->Points->GetPoint(3)); ptIds->InsertId(3, this->PointIds->GetId(1)); pts->InsertPoint(3, this->Points->GetPoint(1)); ptIds->InsertId(4, this->PointIds->GetId(2)); pts->InsertPoint(4, this->Points->GetPoint(2)); ptIds->InsertId(5, this->PointIds->GetId(3)); pts->InsertPoint(5, this->Points->GetPoint(3)); } return 1; } //------------------------------------------------------------------------------ void vtkQuad::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double v0[2], v1[2], v2[2], v3[2], v10[3], v20[3], lenX; double x0[3], x1[3], x2[3], x3[3], n[3], vec20[3], vec30[3]; double *J[2], J0[2], J1[2]; double *JI[2], JI0[2], JI1[2]; double funcDerivs[8], sum[2], dBydx, dBydy; int i, j; // Project points of quad into 2D system this->Points->GetPoint(0, x0); this->Points->GetPoint(1, x1); this->Points->GetPoint(2, x2); ComputeNormal(this, x0, x1, x2, n); this->Points->GetPoint(3, x3); for (i = 0; i < 3; i++) { v10[i] = x1[i] - x0[i]; vec20[i] = x2[i] - x0[i]; vec30[i] = x3[i] - x0[i]; } vtkMath::Cross(n, v10, v20); // creates local y' axis if ((lenX = vtkMath::Normalize(v10)) <= 0.0 || vtkMath::Normalize(v20) <= 0.0) // degenerate { for (j = 0; j < dim; j++) { for (i = 0; i < 3; i++) { derivs[j * dim + i] = 0.0; } } return; } v0[0] = v0[1] = 0.0; // convert points to 2D (i.e., local system) v1[0] = lenX; v1[1] = 0.0; v2[0] = vtkMath::Dot(vec20, v10); v2[1] = vtkMath::Dot(vec20, v20); v3[0] = vtkMath::Dot(vec30, v10); v3[1] = vtkMath::Dot(vec30, v20); this->InterpolationDerivs(pcoords, funcDerivs); // Compute Jacobian and inverse Jacobian J[0] = J0; J[1] = J1; JI[0] = JI0; JI[1] = JI1; J[0][0] = v0[0] * funcDerivs[0] + v1[0] * funcDerivs[1] + v2[0] * funcDerivs[2] + v3[0] * funcDerivs[3]; J[0][1] = v0[1] * funcDerivs[0] + v1[1] * funcDerivs[1] + v2[1] * funcDerivs[2] + v3[1] * funcDerivs[3]; J[1][0] = v0[0] * funcDerivs[4] + v1[0] * funcDerivs[5] + v2[0] * funcDerivs[6] + v3[0] * funcDerivs[7]; J[1][1] = v0[1] * funcDerivs[4] + v1[1] * funcDerivs[5] + v2[1] * funcDerivs[6] + v3[1] * funcDerivs[7]; // Compute inverse Jacobian, return if Jacobian is singular if (!vtkMath::InvertMatrix(J, JI, 2)) { for (j = 0; j < dim; j++) { for (i = 0; i < 3; i++) { derivs[j * dim + i] = 0.0; } } return; } // Loop over "dim" derivative values. For each set of values, // compute derivatives // in local system and then transform into modelling system. // First compute derivatives in local x'-y' coordinate system for (j = 0; j < dim; j++) { sum[0] = sum[1] = 0.0; for (i = 0; i < 4; i++) // loop over interp. function derivatives { sum[0] += funcDerivs[i] * values[dim * i + j]; sum[1] += funcDerivs[4 + i] * values[dim * i + j]; } dBydx = sum[0] * JI[0][0] + sum[1] * JI[0][1]; dBydy = sum[0] * JI[1][0] + sum[1] * JI[1][1]; // Transform into global system (dot product with global axes) derivs[3 * j] = dBydx * v10[0] + dBydy * v20[0]; derivs[3 * j + 1] = dBydx * v10[1] + dBydy * v20[1]; derivs[3 * j + 2] = dBydx * v10[2] + dBydy * v20[2]; } } //------------------------------------------------------------------------------ // support quad clipping typedef int QUAD_EDGE_LIST; struct QUAD_CASES_t { QUAD_EDGE_LIST edges[14]; }; using QUAD_CASES = struct QUAD_CASES_t; static QUAD_CASES quadCases[] = { { { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 0 { { 3, 100, 0, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 1 { { 3, 101, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 2 { { 4, 100, 101, 1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 3 { { 3, 102, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 4 { { 3, 100, 0, 3, 3, 102, 2, 1, 4, 0, 1, 2, 3, -1 } }, // 5 { { 4, 101, 102, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 6 { { 3, 100, 101, 3, 3, 101, 2, 3, 3, 101, 102, 2, -1, -1 } }, // 7 { { 3, 103, 3, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 8 { { 4, 100, 0, 2, 103, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 9 { { 3, 101, 1, 0, 3, 103, 3, 2, 4, 0, 1, 2, 3, -1 } }, // 10 { { 3, 100, 101, 1, 3, 100, 1, 2, 3, 100, 2, 103, -1, -1 } }, // 11 { { 4, 102, 103, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 12 { { 3, 100, 0, 103, 3, 0, 1, 103, 3, 1, 102, 103, -1, -1 } }, // 13 { { 3, 0, 101, 102, 3, 0, 102, 3, 3, 102, 103, 3, -1, -1 } }, // 14 { { 4, 100, 101, 102, 103, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 15 }; static QUAD_CASES quadCasesComplement[] = { { { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 0 { { 3, 100, 0, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 1 { { 3, 101, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 2 { { 4, 100, 101, 1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 3 { { 3, 102, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 4 { { 3, 100, 0, 3, 3, 102, 2, 1, -1, -1, -1, -1, -1, -1 } }, // 5 { { 4, 101, 102, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 6 { { 3, 100, 101, 3, 3, 101, 2, 3, 3, 101, 102, 2, -1, -1 } }, // 7 { { 3, 103, 3, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 8 { { 4, 100, 0, 2, 103, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 9 { { 3, 101, 1, 0, 3, 103, 3, 2, -1, -1, -1, -1, -1, -1 } }, // 10 { { 3, 100, 101, 1, 3, 100, 1, 2, 3, 100, 2, 103, -1, -1 } }, // 11 { { 4, 102, 103, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 12 { { 3, 100, 0, 103, 3, 0, 1, 103, 3, 1, 102, 103, -1, -1 } }, // 13 { { 3, 0, 101, 102, 3, 0, 102, 3, 3, 102, 103, 3, -1, -1 } }, // 14 { { 4, 100, 101, 102, 103, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 15 }; //------------------------------------------------------------------------------ // Clip this quad using scalar value provided. Like contouring, except // that it cuts the quad to produce other quads and/or triangles. void vtkQuad::Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { static const int CASE_MASK[4] = { 1, 2, 4, 8 }; QUAD_CASES* quadCase; QUAD_EDGE_LIST* edge; int i, j, index; const vtkIdType* vert; int e1, e2; int newCellId; vtkIdType pts[4]; int vertexId; double t, x1[3], x2[3], x[3], deltaScalar; double scalar0, scalar1, e1Scalar; // Build the index into the case table if (insideOut) { for (i = 0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i, 0) <= value) { index |= CASE_MASK[i]; } } // Select case based on the index and get the list of edges for this case quadCase = quadCases + index; } else { for (i = 0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i, 0) > value) { index |= CASE_MASK[i]; } } // Select case based on the index and get the list of edges for this case quadCase = quadCasesComplement + index; } edge = quadCase->edges; // generate each quad for (; edge[0] > -1; edge += edge[0] + 1) { for (i = 0; i < edge[0]; i++) // insert quad or triangle { // vertex exists, and need not be interpolated if (edge[i + 1] >= 100) { vertexId = edge[i + 1] - 100; this->Points->GetPoint(vertexId, x); if (locator->InsertUniquePoint(x, pts[i])) { outPd->CopyData(inPd, this->PointIds->GetId(vertexId), pts[i]); } } else // new vertex, interpolate { vert = edges[edge[i + 1]]; // calculate a preferred interpolation direction scalar0 = cellScalars->GetComponent(vert[0], 0); scalar1 = cellScalars->GetComponent(vert[1], 0); deltaScalar = scalar1 - scalar0; if (deltaScalar > 0) { e1 = vert[0]; e2 = vert[1]; e1Scalar = scalar0; } else { e1 = vert[1]; e2 = vert[0]; e1Scalar = scalar1; deltaScalar = -deltaScalar; } // linear interpolation if (deltaScalar == 0.0) { t = 0.0; } else { t = (value - e1Scalar) / deltaScalar; } this->Points->GetPoint(e1, x1); this->Points->GetPoint(e2, x2); for (j = 0; j < 3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if (locator->InsertUniquePoint(x, pts[i])) { vtkIdType p1 = this->PointIds->GetId(e1); vtkIdType p2 = this->PointIds->GetId(e2); outPd->InterpolateEdge(inPd, pts[i], p1, p2, t); } } } // check for degenerate output if (edge[0] == 3) // i.e., a triangle { if (pts[0] == pts[1] || pts[0] == pts[2] || pts[1] == pts[2]) { continue; } } else // a quad { if ((pts[0] == pts[3] && pts[1] == pts[2]) || (pts[0] == pts[1] && pts[3] == pts[2])) { continue; } } newCellId = polys->InsertNextCell(edge[0], pts); outCd->CopyData(inCd, cellId, newCellId); } } //------------------------------------------------------------------------------ static double vtkQuadCellPCoords[12] = { 0.0, 0.0, 0.0, // 1.0, 0.0, 0.0, // 1.0, 1.0, 0.0, // 0.0, 1.0, 0.0 // }; double* vtkQuad::GetParametricCoords() { return vtkQuadCellPCoords; } //------------------------------------------------------------------------------ void vtkQuad::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Line:\n"; this->Line->PrintSelf(os, indent.GetNextIndent()); os << indent << "Triangle:\n"; this->Triangle->PrintSelf(os, indent.GetNextIndent()); }