/*========================================================================= Program: Visualization Toolkit Module: vtkQuadraticQuad.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkQuadraticQuad.h" #include "vtkCellData.h" #include "vtkDoubleArray.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPoints.h" #include "vtkQuad.h" #include "vtkQuadraticEdge.h" vtkStandardNewMacro(vtkQuadraticQuad); //------------------------------------------------------------------------------ // Construct the quad with eight points. vtkQuadraticQuad::vtkQuadraticQuad() { this->Edge = vtkQuadraticEdge::New(); this->Quad = vtkQuad::New(); this->PointData = vtkPointData::New(); this->CellData = vtkCellData::New(); this->CellScalars = vtkDoubleArray::New(); this->CellScalars->SetNumberOfTuples(9); this->Scalars = vtkDoubleArray::New(); this->Scalars->SetNumberOfTuples(4); // We add a fictitious ninth point in order to process the cell. The ninth // point is in the center of the cell. this->Points->SetNumberOfPoints(9); this->PointIds->SetNumberOfIds(9); for (int i = 0; i < 9; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i, 0); } this->Points->SetNumberOfPoints(8); this->PointIds->SetNumberOfIds(8); } //------------------------------------------------------------------------------ vtkQuadraticQuad::~vtkQuadraticQuad() { this->Edge->Delete(); this->Quad->Delete(); this->Scalars->Delete(); this->PointData->Delete(); this->CellData->Delete(); this->CellScalars->Delete(); } //------------------------------------------------------------------------------ vtkCell* vtkQuadraticQuad::GetEdge(int edgeId) { edgeId = (edgeId < 0 ? 0 : (edgeId > 3 ? 3 : edgeId)); int p = (edgeId + 1) % 4; // load point id's this->Edge->PointIds->SetId(0, this->PointIds->GetId(edgeId)); this->Edge->PointIds->SetId(1, this->PointIds->GetId(p)); this->Edge->PointIds->SetId(2, this->PointIds->GetId(edgeId + 4)); // load coordinates this->Edge->Points->SetPoint(0, this->Points->GetPoint(edgeId)); this->Edge->Points->SetPoint(1, this->Points->GetPoint(p)); this->Edge->Points->SetPoint(2, this->Points->GetPoint(edgeId + 4)); return this->Edge; } //------------------------------------------------------------------------------ static int LinearQuads[4][4] = { { 0, 4, 8, 7 }, { 4, 1, 5, 8 }, { 8, 5, 2, 6 }, { 7, 8, 6, 3 }, }; void vtkQuadraticQuad::Subdivide(double* weights) { int i, j; double pc[3], x[3]; pc[0] = pc[1] = 0.5; vtkQuadraticQuad::InterpolationFunctions(pc, weights); double p[3]; x[0] = x[1] = x[2] = 0.0; for (i = 0; i < 8; i++) { this->Points->GetPoint(i, p); for (j = 0; j < 3; j++) { x[j] += p[j] * weights[i]; } } this->Points->SetPoint(8, x); } //------------------------------------------------------------------------------ int vtkQuadraticQuad::EvaluatePosition(const double* x, double closestPoint[3], int& subId, double pcoords[3], double& minDist2, double weights[]) { double pc[3], dist2; int ignoreId, i, returnStatus = 0, status; double tempWeights[4]; double closest[3]; // compute the midquad node this->Subdivide(weights); // four linear quads are used for (minDist2 = VTK_DOUBLE_MAX, i = 0; i < 4; i++) { this->Quad->Points->SetPoint(0, this->Points->GetPoint(LinearQuads[i][0])); this->Quad->Points->SetPoint(1, this->Points->GetPoint(LinearQuads[i][1])); this->Quad->Points->SetPoint(2, this->Points->GetPoint(LinearQuads[i][2])); this->Quad->Points->SetPoint(3, this->Points->GetPoint(LinearQuads[i][3])); status = this->Quad->EvaluatePosition(x, closest, ignoreId, pc, dist2, tempWeights); if (status != -1 && dist2 < minDist2) { returnStatus = status; minDist2 = dist2; subId = i; pcoords[0] = pc[0]; pcoords[1] = pc[1]; } } // adjust parametric coordinates if (returnStatus != -1) { if (subId == 0) { pcoords[0] /= 2.0; pcoords[1] /= 2.0; } else if (subId == 1) { pcoords[0] = 0.5 + (pcoords[0] / 2.0); pcoords[1] /= 2.0; } else if (subId == 2) { pcoords[0] = 0.5 + (pcoords[0] / 2.0); pcoords[1] = 0.5 + (pcoords[1] / 2.0); } else { pcoords[0] /= 2.0; pcoords[1] = 0.5 + (pcoords[1] / 2.0); } pcoords[2] = 0.0; if (closestPoint != nullptr) { // Compute both closestPoint and weights this->EvaluateLocation(subId, pcoords, closestPoint, weights); } else { // Compute weights only vtkQuadraticQuad::InterpolationFunctions(pcoords, weights); } } return returnStatus; } //------------------------------------------------------------------------------ void vtkQuadraticQuad::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { int i, j; double pt[3]; vtkQuadraticQuad::InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i = 0; i < 8; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 3; j++) { x[j] += pt[j] * weights[i]; } } } //------------------------------------------------------------------------------ int vtkQuadraticQuad::CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) { return this->Quad->CellBoundary(subId, pcoords, pts); } static double MidPoints[1][3] = { { 0.5, 0.5, 0.0 } }; //------------------------------------------------------------------------------ void vtkQuadraticQuad::InterpolateAttributes( vtkPointData* inPd, vtkCellData* inCd, vtkIdType cellId, vtkDataArray* cellScalars) { int numMidPts, i, j; double weights[20]; double x[3]; double s; // Copy point and cell attribute data, first make sure it's empty: this->PointData->Initialize(); this->CellData->Initialize(); // Make sure to copy ALL arrays. These field data have to be // identical to the input field data. Otherwise, CopyData // that occurs later may not work because the output field // data was initialized (CopyAllocate) with the input field // data. this->PointData->CopyAllOn(); this->CellData->CopyAllOn(); this->PointData->CopyAllocate(inPd, 9); this->CellData->CopyAllocate(inCd, 4); // copy the point data over into point ids 0->7 for (i = 0; i < 8; i++) { this->PointData->CopyData(inPd, this->PointIds->GetId(i), i); this->CellScalars->SetValue(i, cellScalars->GetTuple1(i)); } // copy the cell data over to the linear cells for (i = 0; i < 4; i++) { this->CellData->CopyData(inCd, cellId, i); } // Interpolate new values double p[3]; this->Points->Resize(9); this->CellScalars->Resize(9); for (numMidPts = 0; numMidPts < 1; numMidPts++) { vtkQuadraticQuad::InterpolationFunctions(MidPoints[numMidPts], weights); x[0] = x[1] = x[2] = 0.0; s = 0.0; for (i = 0; i < 8; i++) { this->Points->GetPoint(i, p); for (j = 0; j < 3; j++) { x[j] += p[j] * weights[i]; } s += cellScalars->GetTuple1(i) * weights[i]; } this->Points->SetPoint(8 + numMidPts, x); this->CellScalars->SetValue(8 + numMidPts, s); this->PointData->InterpolatePoint(inPd, 8 + numMidPts, this->PointIds, weights); } } //------------------------------------------------------------------------------ void vtkQuadraticQuad::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { // interpolate point and cell data this->InterpolateAttributes(inPd, inCd, cellId, cellScalars); // contour each linear quad separately for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) // for each of the four vertices of the linear quad { this->Quad->Points->SetPoint(j, this->Points->GetPoint(LinearQuads[i][j])); this->Quad->PointIds->SetId(j, LinearQuads[i][j]); this->Scalars->SetValue(j, this->CellScalars->GetValue(LinearQuads[i][j])); } this->Quad->Contour(value, this->Scalars, locator, verts, lines, polys, this->PointData, outPd, this->CellData, i, outCd); } } //------------------------------------------------------------------------------ // Clip this quadratic quad using scalar value provided. Like contouring, // except that it cuts the quad to produce other quads and triangles. void vtkQuadraticQuad::Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { // interpolate point and cell data this->InterpolateAttributes(inPd, inCd, cellId, cellScalars); // contour each linear quad separately for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) // for each of the four vertices of the linear quad { this->Quad->Points->SetPoint(j, this->Points->GetPoint(LinearQuads[i][j])); this->Quad->PointIds->SetId(j, LinearQuads[i][j]); this->Scalars->SetValue(j, this->CellScalars->GetValue(LinearQuads[i][j])); } this->Quad->Clip(value, this->Scalars, locator, polys, this->PointData, outPd, this->CellData, i, outCd, insideOut); } } //------------------------------------------------------------------------------ // Line-line intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int vtkQuadraticQuad::IntersectWithLine( const double* p1, const double* p2, double tol, double& t, double* x, double* pcoords, int& subId) { int subTest, i; subId = 0; double weights[8]; // first define the midquad point this->Subdivide(weights); // intersect the four linear quads for (i = 0; i < 4; i++) { this->Quad->Points->SetPoint(0, this->Points->GetPoint(LinearQuads[i][0])); this->Quad->Points->SetPoint(1, this->Points->GetPoint(LinearQuads[i][1])); this->Quad->Points->SetPoint(2, this->Points->GetPoint(LinearQuads[i][2])); this->Quad->Points->SetPoint(3, this->Points->GetPoint(LinearQuads[i][3])); if (this->Quad->IntersectWithLine(p1, p2, tol, t, x, pcoords, subTest)) { return 1; } } return 0; } //------------------------------------------------------------------------------ int vtkQuadraticQuad::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts) { pts->Reset(); ptIds->Reset(); // Create six linear triangles: one at each corner and two // to cover the remaining quadrilateral. // First the corner vertices ptIds->InsertId(0, this->PointIds->GetId(0)); ptIds->InsertId(1, this->PointIds->GetId(4)); ptIds->InsertId(2, this->PointIds->GetId(7)); pts->InsertPoint(0, this->Points->GetPoint(0)); pts->InsertPoint(1, this->Points->GetPoint(4)); pts->InsertPoint(2, this->Points->GetPoint(7)); ptIds->InsertId(3, this->PointIds->GetId(4)); ptIds->InsertId(4, this->PointIds->GetId(1)); ptIds->InsertId(5, this->PointIds->GetId(5)); pts->InsertPoint(3, this->Points->GetPoint(4)); pts->InsertPoint(4, this->Points->GetPoint(1)); pts->InsertPoint(5, this->Points->GetPoint(5)); ptIds->InsertId(6, this->PointIds->GetId(5)); ptIds->InsertId(7, this->PointIds->GetId(2)); ptIds->InsertId(8, this->PointIds->GetId(6)); pts->InsertPoint(6, this->Points->GetPoint(5)); pts->InsertPoint(7, this->Points->GetPoint(2)); pts->InsertPoint(8, this->Points->GetPoint(6)); ptIds->InsertId(9, this->PointIds->GetId(6)); ptIds->InsertId(10, this->PointIds->GetId(3)); ptIds->InsertId(11, this->PointIds->GetId(7)); pts->InsertPoint(9, this->Points->GetPoint(6)); pts->InsertPoint(10, this->Points->GetPoint(3)); pts->InsertPoint(11, this->Points->GetPoint(7)); // Now the two remaining triangles // Choose the triangulation that minimizes the edge length // across the cell. double x4[3], x5[3], x6[3], x7[3]; this->Points->GetPoint(4, x4); this->Points->GetPoint(5, x5); this->Points->GetPoint(6, x6); this->Points->GetPoint(7, x7); if (vtkMath::Distance2BetweenPoints(x4, x6) <= vtkMath::Distance2BetweenPoints(x5, x7)) { ptIds->InsertId(12, this->PointIds->GetId(4)); ptIds->InsertId(13, this->PointIds->GetId(6)); ptIds->InsertId(14, this->PointIds->GetId(7)); pts->InsertPoint(12, this->Points->GetPoint(4)); pts->InsertPoint(13, this->Points->GetPoint(6)); pts->InsertPoint(14, this->Points->GetPoint(7)); ptIds->InsertId(15, this->PointIds->GetId(4)); ptIds->InsertId(16, this->PointIds->GetId(5)); ptIds->InsertId(17, this->PointIds->GetId(6)); pts->InsertPoint(15, this->Points->GetPoint(4)); pts->InsertPoint(16, this->Points->GetPoint(5)); pts->InsertPoint(17, this->Points->GetPoint(6)); } else { ptIds->InsertId(12, this->PointIds->GetId(5)); ptIds->InsertId(13, this->PointIds->GetId(6)); ptIds->InsertId(14, this->PointIds->GetId(7)); pts->InsertPoint(12, this->Points->GetPoint(5)); pts->InsertPoint(13, this->Points->GetPoint(6)); pts->InsertPoint(14, this->Points->GetPoint(7)); ptIds->InsertId(15, this->PointIds->GetId(5)); ptIds->InsertId(16, this->PointIds->GetId(7)); ptIds->InsertId(17, this->PointIds->GetId(4)); pts->InsertPoint(15, this->Points->GetPoint(5)); pts->InsertPoint(16, this->Points->GetPoint(7)); pts->InsertPoint(17, this->Points->GetPoint(4)); } return 1; } //------------------------------------------------------------------------------ void vtkQuadraticQuad::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double sum[2], p[3]; double functionDerivs[16]; double *J[3], J0[3], J1[3], J2[3]; double *JI[3], JI0[3], JI1[3], JI2[3]; vtkQuadraticQuad::InterpolationDerivs(pcoords, functionDerivs); // Compute transposed Jacobian and inverse Jacobian J[0] = J0; J[1] = J1; J[2] = J2; JI[0] = JI0; JI[1] = JI1; JI[2] = JI2; for (int k = 0; k < 3; k++) { J0[k] = J1[k] = 0.0; } for (int i = 0; i < 8; i++) { this->Points->GetPoint(i, p); for (int j = 0; j < 2; j++) { for (int k = 0; k < 3; k++) { J[j][k] += p[k] * functionDerivs[j * 8 + i]; } } } // Compute third row vector in transposed Jacobian and normalize it, so that Jacobian determinant // stays the same. vtkMath::Cross(J0, J1, J2); if (vtkMath::Normalize(J2) == 0.0 || !vtkMath::InvertMatrix(J, JI, 3)) // degenerate { for (int j = 0; j < dim; j++) { for (int i = 0; i < 3; i++) { derivs[j * dim + i] = 0.0; } } return; } // Loop over "dim" derivative values. For each set of values, // compute derivatives // in local system and then transform into modelling system. // First compute derivatives in local x'-y' coordinate system for (int j = 0; j < dim; j++) { sum[0] = sum[1] = 0.0; for (int i = 0; i < 8; i++) // loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim * i + j]; sum[1] += functionDerivs[8 + i] * values[dim * i + j]; } // dBydx = sum[0]*JI[0][0] + sum[1]*JI[0][1]; // dBydy = sum[0]*JI[1][0] + sum[1]*JI[1][1]; // Transform into global system (dot product with global axes) derivs[3 * j] = sum[0] * JI[0][0] + sum[1] * JI[0][1]; derivs[3 * j + 1] = sum[0] * JI[1][0] + sum[1] * JI[1][1]; derivs[3 * j + 2] = sum[0] * JI[2][0] + sum[1] * JI[2][1]; } } //------------------------------------------------------------------------------ // Compute interpolation functions. The first four nodes are the corner // vertices; the others are mid-edge nodes. void vtkQuadraticQuad::InterpolationFunctions(const double pcoords[3], double weights[8]) { double r = pcoords[0]; double s = pcoords[1]; // midedge weights weights[4] = 4 * r * (1.0 - r) * (1.0 - s); weights[5] = 4 * r * (1.0 - s) * s; weights[6] = 4 * r * (1.0 - r) * s; weights[7] = 4 * (1.0 - r) * (1.0 - s) * s; // corner weights[0] = (1.0 - r) * (1.0 - s) - 0.5 * (weights[4] + weights[7]); weights[1] = r * (1.0 - s) - 0.5 * (weights[4] + weights[5]); weights[2] = r * s - 0.5 * (weights[5] + weights[6]); weights[3] = (1.0 - r) * s - 0.5 * (weights[6] + weights[7]); } //------------------------------------------------------------------------------ // Derivatives in parametric space. void vtkQuadraticQuad::InterpolationDerivs(const double pcoords[3], double derivs[16]) { // Coordinate conversion double r = pcoords[0]; double s = pcoords[1]; // Derivatives in the r-direction // midedge derivs[4] = 4 * (1.0 - s) * (1.0 - 2 * r); derivs[5] = 4 * (1.0 - s) * s; derivs[6] = 4 * s * (1.0 - 2 * r); derivs[7] = -4 * (1.0 - s) * s; derivs[0] = -(1.0 - s) - 0.5 * (derivs[4] + derivs[7]); derivs[1] = (1.0 - s) - 0.5 * (derivs[4] + derivs[5]); derivs[2] = s - 0.5 * (derivs[5] + derivs[6]); derivs[3] = -s - 0.5 * (derivs[6] + derivs[7]); // Derivatives in the s-direction // midedge derivs[12] = -4 * r * (1.0 - r); derivs[13] = 4 * r * (1.0 - 2 * s); derivs[14] = 4 * r * (1.0 - r); derivs[15] = 4 * (1.0 - r) * (1.0 - 2 * s); derivs[8] = -(1.0 - r) - 0.5 * (derivs[12] + derivs[15]); derivs[9] = -r - 0.5 * (derivs[12] + derivs[13]); derivs[10] = r - 0.5 * (derivs[13] + derivs[14]); derivs[11] = (1.0 - r) - 0.5 * (derivs[14] + derivs[15]); } //------------------------------------------------------------------------------ static double vtkQQuadCellPCoords[24] = { 0.0, 0.0, 0.0, // 1.0, 0.0, 0.0, // 1.0, 1.0, 0.0, // 0.0, 1.0, 0.0, // 0.5, 0.0, 0.0, // 1.0, 0.5, 0.0, // 0.5, 1.0, 0.0, // 0.0, 0.5, 0.0 // }; double* vtkQuadraticQuad::GetParametricCoords() { return vtkQQuadCellPCoords; } //------------------------------------------------------------------------------ void vtkQuadraticQuad::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Edge:\n"; this->Edge->PrintSelf(os, indent.GetNextIndent()); os << indent << "Quad:\n"; this->Quad->PrintSelf(os, indent.GetNextIndent()); os << indent << "Scalars:\n"; this->Scalars->PrintSelf(os, indent.GetNextIndent()); }