/*========================================================================= Program: Visualization Toolkit Module: vtkQuadraticTetra.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkQuadraticTetra.h" #include "vtkDoubleArray.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPoints.h" #include "vtkQuadraticEdge.h" #include "vtkQuadraticTriangle.h" #include "vtkTetra.h" vtkStandardNewMacro(vtkQuadraticTetra); //------------------------------------------------------------------------------ // Construct the tetra with ten points. vtkQuadraticTetra::vtkQuadraticTetra() { this->Edge = vtkQuadraticEdge::New(); this->Face = vtkQuadraticTriangle::New(); this->Tetra = vtkTetra::New(); this->Scalars = vtkDoubleArray::New(); this->Scalars->SetNumberOfTuples(4); this->Points->SetNumberOfPoints(10); this->PointIds->SetNumberOfIds(10); for (int i = 0; i < 10; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i, 0); } } //------------------------------------------------------------------------------ vtkQuadraticTetra::~vtkQuadraticTetra() { this->Edge->Delete(); this->Face->Delete(); this->Tetra->Delete(); this->Scalars->Delete(); } //------------------------------------------------------------------------------ // clip each of the four vertices; the remaining octahedron is // divided into four tetrahedron. static int LinearTetras[3][8][4] = { { { 0, 4, 6, 7 }, { 4, 1, 5, 8 }, { 6, 5, 2, 9 }, { 7, 8, 9, 3 }, { 6, 4, 5, 8 }, { 6, 5, 9, 8 }, { 6, 9, 7, 8 }, { 6, 7, 4, 8 } }, { { 0, 4, 6, 7 }, { 4, 1, 5, 8 }, { 6, 5, 2, 9 }, { 7, 8, 9, 3 }, { 4, 8, 5, 9 }, { 4, 5, 6, 9 }, { 4, 6, 7, 9 }, { 4, 7, 8, 9 } }, { { 0, 4, 6, 7 }, { 4, 1, 5, 8 }, { 6, 5, 2, 9 }, { 7, 8, 9, 3 }, { 5, 9, 6, 7 }, { 5, 6, 4, 7 }, { 5, 4, 8, 7 }, { 5, 8, 9, 7 } }, }; static constexpr vtkIdType TetraFaces[4][6] = { { 0, 1, 3, 4, 8, 7 }, { 1, 2, 3, 5, 9, 8 }, { 2, 0, 3, 6, 7, 9 }, { 0, 2, 1, 6, 5, 4 }, }; static constexpr vtkIdType TetraEdges[6][3] = { { 0, 1, 4 }, { 1, 2, 5 }, { 2, 0, 6 }, { 0, 3, 7 }, { 1, 3, 8 }, { 2, 3, 9 }, }; //------------------------Tuple1---------------------------------------------------- const vtkIdType* vtkQuadraticTetra::GetEdgeArray(vtkIdType edgeId) { return TetraEdges[edgeId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkQuadraticTetra::GetFaceArray(vtkIdType faceId) { return TetraFaces[faceId]; } //------------------------------------------------------------------------------ vtkCell* vtkQuadraticTetra::GetEdge(int edgeId) { edgeId = (edgeId < 0 ? 0 : (edgeId > 5 ? 5 : edgeId)); // load point id's this->Edge->PointIds->SetId(0, this->PointIds->GetId(TetraEdges[edgeId][0])); this->Edge->PointIds->SetId(1, this->PointIds->GetId(TetraEdges[edgeId][1])); this->Edge->PointIds->SetId(2, this->PointIds->GetId(TetraEdges[edgeId][2])); // load coordinates this->Edge->Points->SetPoint(0, this->Points->GetPoint(TetraEdges[edgeId][0])); this->Edge->Points->SetPoint(1, this->Points->GetPoint(TetraEdges[edgeId][1])); this->Edge->Points->SetPoint(2, this->Points->GetPoint(TetraEdges[edgeId][2])); return this->Edge; } //------------------------------------------------------------------------------ vtkCell* vtkQuadraticTetra::GetFace(int faceId) { faceId = (faceId < 0 ? 0 : (faceId > 3 ? 3 : faceId)); // load point id's and coordinates for (int i = 0; i < 6; i++) { this->Face->PointIds->SetId(i, this->PointIds->GetId(TetraFaces[faceId][i])); this->Face->Points->SetPoint(i, this->Points->GetPoint(TetraFaces[faceId][i])); } return this->Face; } //------------------------------------------------------------------------------ namespace { const double VTK_DIVERGED = 1.e6; const int VTK_TETRA_MAX_ITERATION = 20; const double VTK_TETRA_CONVERGED = 1.e-05; } int vtkQuadraticTetra::EvaluatePosition(const double* x, double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) { double params[3] = { .25, .25, .25 }; double derivs[30]; // compute a bound on the volume to get a scale for an acceptable determinant double longestEdge = 0; for (int i = 0; i < 6; i++) { double pt0[3], pt1[3]; this->Points->GetPoint(TetraEdges[i][0], pt0); this->Points->GetPoint(TetraEdges[i][1], pt1); double d2 = vtkMath::Distance2BetweenPoints(pt0, pt1); if (longestEdge < d2) { longestEdge = d2; } } // longestEdge value is already squared double volumeBound = pow(longestEdge, 1.5); double determinantTolerance = 1e-20 < .00001 * volumeBound ? 1e-20 : .00001 * volumeBound; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = 0.25; // enter iteration loop int converged = 0; for (int iteration = 0; !converged && (iteration < VTK_TETRA_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives vtkQuadraticTetra::InterpolationFunctions(pcoords, weights); vtkQuadraticTetra::InterpolationDerivs(pcoords, derivs); // calculate newton functions double fcol[3] = { 0, 0, 0 }, rcol[3] = { 0, 0, 0 }, scol[3] = { 0, 0, 0 }, tcol[3] = { 0, 0, 0 }; for (int i = 0; i < 10; i++) { double pt[3]; this->Points->GetPoint(i, pt); for (int j = 0; j < 3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i + 10]; tcol[j] += pt[j] * derivs[i + 20]; } } for (int i = 0; i < 3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements double d = vtkMath::Determinant3x3(rcol, scol, tcol); if (fabs(d) < determinantTolerance) { return -1; } pcoords[0] = params[0] - 0.5 * vtkMath::Determinant3x3(fcol, scol, tcol) / d; pcoords[1] = params[1] - 0.5 * vtkMath::Determinant3x3(rcol, fcol, tcol) / d; pcoords[2] = params[2] - 0.5 * vtkMath::Determinant3x3(rcol, scol, fcol) / d; // check for convergence if (((fabs(pcoords[0] - params[0])) < VTK_TETRA_CONVERGED) && ((fabs(pcoords[1] - params[1])) < VTK_TETRA_CONVERGED) && ((fabs(pcoords[2] - params[2])) < VTK_TETRA_CONVERGED)) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if (!converged) { return -1; } vtkQuadraticTetra::InterpolationFunctions(pcoords, weights); if (pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 && pcoords[0] + pcoords[1] + pcoords[2] <= 1.001) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; // inside tetra } return 1; } else { double pc[3], w[10]; if (closestPoint) { for (int i = 0; i < 3; i++) // only approximate, not really true for warped tetra { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, static_cast(w)); dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x); } return 0; } } //------------------------------------------------------------------------------ void vtkQuadraticTetra::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { int i, j; double pt[3]; vtkQuadraticTetra::InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i = 0; i < 10; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 3; j++) { x[j] += pt[j] * weights[i]; } } } //------------------------------------------------------------------------------ int vtkQuadraticTetra::CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) { for (int i = 0; i < 4; ++i) // For each of the four vertices of the tet { this->Tetra->PointIds->SetId(i, this->PointIds->GetId(i)); } return this->Tetra->CellBoundary(subId, pcoords, pts); } //------------------------------------------------------------------------------ void vtkQuadraticTetra::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { // Determine how to tessellate. This will depend on the scalars (to try and minimize // artifacts). double sDiff0 = fabs(cellScalars->GetTuple1(8) - cellScalars->GetTuple1(6)); double sDiff1 = fabs(cellScalars->GetTuple1(9) - cellScalars->GetTuple1(4)); double sDiff2 = fabs(cellScalars->GetTuple1(7) - cellScalars->GetTuple1(5)); int dir = ((sDiff0 < sDiff1 ? (sDiff0 < sDiff2 ? 0 : 2) : (sDiff1 < sDiff2 ? 1 : 2))); for (int i = 0; i < 8; i++) // for each subdivided tetra { for (int j = 0; j < 4; j++) // for each of the four vertices of the tetra { this->Tetra->Points->SetPoint(j, this->Points->GetPoint(LinearTetras[dir][i][j])); this->Tetra->PointIds->SetId(j, this->PointIds->GetId(LinearTetras[dir][i][j])); this->Scalars->SetValue(j, cellScalars->GetTuple1(LinearTetras[dir][i][j])); } this->Tetra->Contour( value, this->Scalars, locator, verts, lines, polys, inPd, outPd, inCd, cellId, outCd); } } //------------------------------------------------------------------------------ // Line-line intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int vtkQuadraticTetra::IntersectWithLine( const double* p1, const double* p2, double tol, double& t, double* x, double* pcoords, int& subId) { int intersection = 0; double tTemp; double pc[3], xTemp[3]; int faceNum; t = VTK_DOUBLE_MAX; for (faceNum = 0; faceNum < 4; faceNum++) { for (int i = 0; i < 6; i++) { this->Face->Points->SetPoint(i, this->Points->GetPoint(TetraFaces[faceNum][i])); } if (this->Face->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId)) { intersection = 1; if (tTemp < t) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 1: pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 2: pcoords[0] = pc[0]; pcoords[1] = 0.0; pcoords[2] = 0.0; break; case 3: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = pc[2]; break; } } } } return intersection; } //------------------------------------------------------------------------------ int vtkQuadraticTetra::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts) { pts->Reset(); ptIds->Reset(); for (int i = 0; i < 8; i++) { for (int j = 0; j < 4; j++) { ptIds->InsertId(4 * i + j, this->PointIds->GetId(LinearTetras[0][i][j])); pts->InsertPoint(4 * i + j, this->Points->GetPoint(LinearTetras[0][i][j])); } } return 1; } //------------------------------------------------------------------------------ // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void vtkQuadraticTetra::JacobianInverse( const double pcoords[3], double** inverse, double derivs[60]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives vtkQuadraticTetra::InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i = 0; i < 3; i++) // initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for (j = 0; j < 10; j++) { this->Points->GetPoint(j, x); for (i = 0; i < 3; i++) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[10 + j]; m2[i] += x[i] * derivs[20 + j]; } } // now find the inverse if (vtkMath::InvertMatrix(m, inverse, 3) == 0) { vtkErrorMacro(<< "Jacobian inverse not found"); return; } } //------------------------------------------------------------------------------ void vtkQuadraticTetra::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[30], sum[3]; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k = 0; k < dim; k++) // loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for (i = 0; i < 10; i++) // loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim * i + k]; sum[1] += functionDerivs[10 + i] * values[dim * i + k]; sum[2] += functionDerivs[20 + i] * values[dim * i + k]; } for (j = 0; j < 3; j++) // loop over derivative directions { derivs[3 * k + j] = sum[0] * jI[j][0] + sum[1] * jI[j][1] + sum[2] * jI[j][2]; } } } //------------------------------------------------------------------------------ // Clip this quadratic tetra using the scalar value provided. Like contouring, // except that it cuts the tetra to produce other tetra. void vtkQuadraticTetra::Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { // Determine how to tessellate. This will depend on the scalars (to try and minimize // artifacts). double sDiff0 = fabs(cellScalars->GetTuple1(8) - cellScalars->GetTuple1(6)); double sDiff1 = fabs(cellScalars->GetTuple1(9) - cellScalars->GetTuple1(4)); double sDiff2 = fabs(cellScalars->GetTuple1(7) - cellScalars->GetTuple1(5)); int dir = ((sDiff0 < sDiff1 ? (sDiff0 < sDiff2 ? 0 : 2) : (sDiff1 < sDiff2 ? 1 : 2))); for (int i = 0; i < 8; i++) // for each subdivided tetra { for (int j = 0; j < 4; j++) // for each of the four vertices of the tetra { this->Tetra->Points->SetPoint(j, this->Points->GetPoint(LinearTetras[dir][i][j])); this->Tetra->PointIds->SetId(j, this->PointIds->GetId(LinearTetras[dir][i][j])); this->Scalars->SetValue(j, cellScalars->GetTuple1(LinearTetras[dir][i][j])); } this->Tetra->Clip( value, this->Scalars, locator, tetras, inPd, outPd, inCd, cellId, outCd, insideOut); } } //------------------------------------------------------------------------------ int vtkQuadraticTetra::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = pcoords[2] = 0.25; return 0; } //------------------------------------------------------------------------------ // Compute interpolation functions. First four nodes are the // tetrahedron corner vertices; the others are mid-edge nodes. void vtkQuadraticTetra::InterpolationFunctions(const double pcoords[3], double weights[10]) { double r = pcoords[0]; double s = pcoords[1]; double t = pcoords[2]; double u = 1.0 - r - s - t; // corners weights[0] = u * (2.0 * u - 1.0); weights[1] = r * (2.0 * r - 1.0); weights[2] = s * (2.0 * s - 1.0); weights[3] = t * (2.0 * t - 1.0); // midedge weights[4] = 4.0 * u * r; weights[5] = 4.0 * r * s; weights[6] = 4.0 * s * u; weights[7] = 4.0 * u * t; weights[8] = 4.0 * r * t; weights[9] = 4.0 * s * t; } //------------------------------------------------------------------------------ // Derivatives in parametric space. void vtkQuadraticTetra::InterpolationDerivs(const double pcoords[3], double derivs[30]) { double r = pcoords[0]; double s = pcoords[1]; double t = pcoords[2]; // r-derivatives: dW0/dr to dW9/dr derivs[0] = 4.0 * (r + s + t) - 3.0; derivs[1] = 4.0 * r - 1.0; derivs[2] = 0.0; derivs[3] = 0.0; derivs[4] = 4.0 - 8.0 * r - 4.0 * s - 4.0 * t; derivs[5] = 4.0 * s; derivs[6] = -4.0 * s; derivs[7] = -4.0 * t; derivs[8] = 4.0 * t; derivs[9] = 0.0; // s-derivatives: dW0/ds to dW9/ds derivs[10] = 4.0 * (r + s + t) - 3.0; derivs[11] = 0.0; derivs[12] = 4.0 * s - 1.0; derivs[13] = 0.0; derivs[14] = -4.0 * r; derivs[15] = 4.0 * r; derivs[16] = 4.0 - 4.0 * r - 8.0 * s - 4.0 * t; derivs[17] = -4.0 * t; derivs[18] = 0.0; derivs[19] = 4.0 * t; // t-derivatives: dW0/dt to dW9/dt derivs[20] = 4.0 * (r + s + t) - 3.0; derivs[21] = 0.0; derivs[22] = 0.0; derivs[23] = 4.0 * t - 1.0; derivs[24] = -4.0 * r; derivs[25] = 0.0; derivs[26] = -4.0 * s; derivs[27] = 4.0 - 4.0 * r - 4.0 * s - 8.0 * t; derivs[28] = 4.0 * r; derivs[29] = 4.0 * s; } //------------------------------------------------------------------------------ double vtkQuadraticTetra::GetParametricDistance(const double pcoords[3]) { int i; double pDist, pDistMax = 0.0; double pc[4]; pc[0] = pcoords[0]; pc[1] = pcoords[1]; pc[2] = pcoords[2]; pc[3] = 1.0 - pcoords[0] - pcoords[1] - pcoords[2]; for (i = 0; i < 4; i++) { if (pc[i] < 0.0) { pDist = -pc[i]; } else if (pc[i] > 1.0) { pDist = pc[i] - 1.0; } else // inside the cell in the parametric direction { pDist = 0.0; } if (pDist > pDistMax) { pDistMax = pDist; } } return pDistMax; } //------------------------------------------------------------------------------ static double vtkQTetraCellPCoords[30] = { 0.0, 0.0, 0.0, // 1.0, 0.0, 0.0, // 0.0, 1.0, 0.0, // 0.0, 0.0, 1.0, // 0.5, 0.0, 0.0, // 0.5, 0.5, 0.0, // 0.0, 0.5, 0.0, // 0.0, 0.0, 0.5, // 0.5, 0.0, 0.5, // 0.0, 0.5, 0.5 // }; double* vtkQuadraticTetra::GetParametricCoords() { return vtkQTetraCellPCoords; } //------------------------------------------------------------------------------ void vtkQuadraticTetra::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Edge:\n"; this->Edge->PrintSelf(os, indent.GetNextIndent()); os << indent << "Face:\n"; this->Face->PrintSelf(os, indent.GetNextIndent()); os << indent << "Tetra:\n"; this->Tetra->PrintSelf(os, indent.GetNextIndent()); os << indent << "Scalars:\n"; this->Scalars->PrintSelf(os, indent.GetNextIndent()); }