/*========================================================================= Program: Visualization Toolkit Module: vtkQuadraticWedge.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkQuadraticWedge.h" #include "vtkCellData.h" #include "vtkDoubleArray.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPoints.h" #include "vtkQuadraticEdge.h" #include "vtkQuadraticQuad.h" #include "vtkQuadraticTriangle.h" #include "vtkWedge.h" vtkStandardNewMacro(vtkQuadraticWedge); //------------------------------------------------------------------------------ // Construct the wedge with 15 points + 3 extra points for internal // computation. vtkQuadraticWedge::vtkQuadraticWedge() { // At times the cell looks like it has 18 points (during interpolation) // We initially allocate for 18. this->Points->SetNumberOfPoints(18); this->PointIds->SetNumberOfIds(18); for (int i = 0; i < 18; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i, 0); } this->Points->SetNumberOfPoints(15); this->PointIds->SetNumberOfIds(15); this->Edge = vtkQuadraticEdge::New(); this->Face = vtkQuadraticQuad::New(); this->TriangleFace = vtkQuadraticTriangle::New(); this->Wedge = vtkWedge::New(); this->PointData = vtkPointData::New(); this->CellData = vtkCellData::New(); this->CellScalars = vtkDoubleArray::New(); this->CellScalars->SetNumberOfTuples(18); this->Scalars = vtkDoubleArray::New(); this->Scalars->SetNumberOfTuples(6); // num of vertices } //------------------------------------------------------------------------------ vtkQuadraticWedge::~vtkQuadraticWedge() { this->Edge->Delete(); this->Face->Delete(); this->TriangleFace->Delete(); this->Wedge->Delete(); this->PointData->Delete(); this->CellData->Delete(); this->CellScalars->Delete(); this->Scalars->Delete(); } //------------------------------------------------------------------------------ // instead of using an hexahedron we could use two prims/wedge... static int LinearWedges[8][6] = { { 0, 8, 6, 12, 17, 15 }, { 6, 8, 7, 15, 17, 16 }, { 6, 7, 1, 15, 16, 13 }, { 8, 2, 7, 17, 14, 16 }, { 12, 17, 15, 3, 11, 9 }, { 15, 17, 16, 9, 11, 10 }, { 15, 16, 13, 9, 10, 4 }, { 17, 14, 16, 11, 5, 10 }, }; static constexpr vtkIdType WedgeFaces[5][8] = { { 0, 1, 2, 6, 7, 8, 0, 0 }, { 3, 5, 4, 11, 10, 9, 0, 0 }, { 0, 3, 4, 1, 12, 9, 13, 6 }, { 1, 4, 5, 2, 13, 10, 14, 7 }, { 2, 5, 3, 0, 14, 11, 12, 8 }, }; static constexpr vtkIdType WedgeEdges[9][3] = { { 0, 1, 6 }, { 1, 2, 7 }, { 2, 0, 8 }, { 3, 4, 9 }, { 4, 5, 10 }, { 5, 3, 11 }, { 0, 3, 12 }, { 1, 4, 13 }, { 2, 5, 14 }, }; static double MidPoints[3][3] = { { 0.5, 0.0, 0.5 }, { 0.5, 0.5, 0.5 }, { 0.0, 0.5, 0.5 }, }; //------------------------------------------------------------------------------ const vtkIdType* vtkQuadraticWedge::GetEdgeArray(vtkIdType edgeId) { return WedgeEdges[edgeId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkQuadraticWedge::GetFaceArray(vtkIdType faceId) { return WedgeFaces[faceId]; } //------------------------------------------------------------------------------ vtkCell* vtkQuadraticWedge::GetEdge(int edgeId) { edgeId = (edgeId < 0 ? 0 : (edgeId > 8 ? 8 : edgeId)); for (int i = 0; i < 3; i++) { this->Edge->PointIds->SetId(i, this->PointIds->GetId(WedgeEdges[edgeId][i])); this->Edge->Points->SetPoint(i, this->Points->GetPoint(WedgeEdges[edgeId][i])); } return this->Edge; } //------------------------------------------------------------------------------ vtkCell* vtkQuadraticWedge::GetFace(int faceId) { faceId = (faceId < 0 ? 0 : (faceId > 4 ? 4 : faceId)); // load point id's and coordinates // be careful with the last two: if (faceId < 2) { for (int i = 0; i < 6; i++) { this->TriangleFace->PointIds->SetId(i, this->PointIds->GetId(WedgeFaces[faceId][i])); this->TriangleFace->Points->SetPoint(i, this->Points->GetPoint(WedgeFaces[faceId][i])); } return this->TriangleFace; } else { for (int i = 0; i < 8; i++) { this->Face->PointIds->SetId(i, this->PointIds->GetId(WedgeFaces[faceId][i])); this->Face->Points->SetPoint(i, this->Points->GetPoint(WedgeFaces[faceId][i])); } return this->Face; } } //------------------------------------------------------------------------------ static const double VTK_DIVERGED = 1.e6; static const int VTK_WEDGE_MAX_ITERATION = 10; static const double VTK_WEDGE_CONVERGED = 1.e-03; int vtkQuadraticWedge::EvaluatePosition(const double* x, double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) { double params[3] = { 0.5, 0.5, 0.5 }; double derivs[3 * 15]; // compute a bound on the volume to get a scale for an acceptable determinant double longestEdge = 0; for (int i = 0; i < 9; i++) { double pt0[3], pt1[3]; this->Points->GetPoint(WedgeEdges[i][0], pt0); this->Points->GetPoint(WedgeEdges[i][1], pt1); double d2 = vtkMath::Distance2BetweenPoints(pt0, pt1); if (longestEdge < d2) { longestEdge = d2; } } // longestEdge value is already squared double volumeBound = pow(longestEdge, 1.5); double determinantTolerance = 1e-20 < .00001 * volumeBound ? 1e-20 : .00001 * volumeBound; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = .5; // enter iteration loop int converged = 0; for (int iteration = 0; !converged && (iteration < VTK_WEDGE_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives vtkQuadraticWedge::InterpolationFunctions(pcoords, weights); vtkQuadraticWedge::InterpolationDerivs(pcoords, derivs); // calculate newton functions double fcol[3] = { 0, 0, 0 }, rcol[3] = { 0, 0, 0 }, scol[3] = { 0, 0, 0 }, tcol[3] = { 0, 0, 0 }; for (int i = 0; i < 15; i++) { double pt[3]; this->Points->GetPoint(i, pt); for (int j = 0; j < 3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i + 15]; tcol[j] += pt[j] * derivs[i + 30]; } } for (int i = 0; i < 3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements double d = vtkMath::Determinant3x3(rcol, scol, tcol); if (fabs(d) < determinantTolerance) { vtkDebugMacro(<< "Determinant incorrect, iteration " << iteration); return -1; } pcoords[0] = params[0] - 0.5 * vtkMath::Determinant3x3(fcol, scol, tcol) / d; pcoords[1] = params[1] - 0.5 * vtkMath::Determinant3x3(rcol, fcol, tcol) / d; pcoords[2] = params[2] - 0.5 * vtkMath::Determinant3x3(rcol, scol, fcol) / d; // check for convergence if (((fabs(pcoords[0] - params[0])) < VTK_WEDGE_CONVERGED) && ((fabs(pcoords[1] - params[1])) < VTK_WEDGE_CONVERGED) && ((fabs(pcoords[2] - params[2])) < VTK_WEDGE_CONVERGED)) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if (!converged) { return -1; } vtkQuadraticWedge::InterpolationFunctions(pcoords, weights); if (pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 && pcoords[0] + pcoords[1] <= 1.001) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; // inside wedge } return 1; } else { double pc[3], w[15]; if (closestPoint) { for (int i = 0; i < 3; i++) // only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, static_cast(w)); dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x); } return 0; } } //------------------------------------------------------------------------------ void vtkQuadraticWedge::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { double pt[3]; vtkQuadraticWedge::InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (int i = 0; i < 15; i++) { this->Points->GetPoint(i, pt); for (int j = 0; j < 3; j++) { x[j] += pt[j] * weights[i]; } } } //------------------------------------------------------------------------------ int vtkQuadraticWedge::CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) { return this->Wedge->CellBoundary(subId, pcoords, pts); } //------------------------------------------------------------------------------ void vtkQuadraticWedge::Subdivide( vtkPointData* inPd, vtkCellData* inCd, vtkIdType cellId, vtkDataArray* cellScalars) { int numMidPts, i, j; double weights[15]; double x[3]; double s; // Copy point and cell attribute data, first make sure it's empty: this->PointData->Initialize(); this->CellData->Initialize(); // Make sure to copy ALL arrays. These field data have to be // identical to the input field data. Otherwise, CopyData // that occurs later may not work because the output field // data was initialized (CopyAllocate) with the input field // data. this->PointData->CopyAllOn(); this->CellData->CopyAllOn(); this->PointData->CopyAllocate(inPd, 18); this->CellData->CopyAllocate(inCd, 8); for (i = 0; i < 15; i++) { this->PointData->CopyData(inPd, this->PointIds->GetId(i), i); this->CellScalars->SetValue(i, cellScalars->GetTuple1(i)); } for (i = 0; i < 8; i++) { this->CellData->CopyData(inCd, cellId, i); } // Interpolate new values double p[3]; this->Points->Resize(18); this->CellScalars->Resize(18); for (numMidPts = 0; numMidPts < 3; numMidPts++) { vtkQuadraticWedge::InterpolationFunctions(MidPoints[numMidPts], weights); x[0] = x[1] = x[2] = 0.0; s = 0.0; for (i = 0; i < 15; i++) { this->Points->GetPoint(i, p); for (j = 0; j < 3; j++) { x[j] += p[j] * weights[i]; } s += cellScalars->GetTuple1(i) * weights[i]; } this->Points->SetPoint(15 + numMidPts, x); this->CellScalars->SetValue(15 + numMidPts, s); this->PointData->InterpolatePoint(inPd, 15 + numMidPts, this->PointIds, weights); } } //------------------------------------------------------------------------------ void vtkQuadraticWedge::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { // subdivide into 8 linear wedges this->Subdivide(inPd, inCd, cellId, cellScalars); // contour each linear wedge separately for (int i = 0; i < 8; i++) // for each wedge { for (int j = 0; j < 6; j++) // for each point of wedge { this->Wedge->Points->SetPoint(j, this->Points->GetPoint(LinearWedges[i][j])); this->Wedge->PointIds->SetId(j, LinearWedges[i][j]); this->Scalars->SetValue(j, this->CellScalars->GetValue(LinearWedges[i][j])); } this->Wedge->Contour(value, this->Scalars, locator, verts, lines, polys, this->PointData, outPd, this->CellData, i, outCd); } } //------------------------------------------------------------------------------ // Line-hex intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int vtkQuadraticWedge::IntersectWithLine( const double* p1, const double* p2, double tol, double& t, double* x, double* pcoords, int& subId) { int intersection = 0; double tTemp; double pc[3], xTemp[3]; int faceNum; int inter; t = VTK_DOUBLE_MAX; for (faceNum = 0; faceNum < 5; faceNum++) { // We have 8 nodes on rect face // and 6 on triangle faces if (faceNum < 2) { for (int i = 0; i < 6; i++) { this->TriangleFace->Points->SetPoint(i, this->Points->GetPoint(WedgeFaces[faceNum][i])); } inter = this->TriangleFace->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId); } else { for (int i = 0; i < 8; i++) { this->Face->Points->SetPoint(i, this->Points->GetPoint(WedgeFaces[faceNum][i])); } inter = this->Face->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId); } if (inter) { intersection = 1; if (tTemp < t) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = pc[0]; break; case 1: pcoords[0] = 1.0; pcoords[1] = pc[0]; pcoords[2] = pc[1]; break; case 2: pcoords[0] = pc[0]; pcoords[1] = 0.0; pcoords[2] = pc[1]; break; case 3: pcoords[0] = pc[1]; pcoords[1] = 1.0; pcoords[2] = pc[0]; break; case 4: pcoords[0] = pc[1]; pcoords[1] = pc[0]; pcoords[2] = 0.0; break; case 5: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0; break; } } } } return intersection; } //------------------------------------------------------------------------------ int vtkQuadraticWedge::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts) { // A quadratic wedge can be divided into 4 wedges. // The central one is linear and is divided into 3 tets // Each of the 3 wedges around the central one are divided into 4 tets since each of these // wedges have a node in the middle of one of their edges. // This leads to a total of 15 tets pts->SetNumberOfPoints(15 * 4); ptIds->SetNumberOfIds(15 * 4); vtkIdType ids[15][4] = { { 0, 8, 6, 12 }, { 1, 6, 7, 13 }, { 2, 7, 8, 14 }, { 3, 9, 11, 12 }, { 4, 10, 9, 13 }, { 5, 11, 10, 14 }, { 6, 8, 7, 9 }, { 7, 9, 11, 10 }, { 7, 8, 11, 9 }, { 6, 8, 9, 12 }, { 11, 9, 8, 12 }, { 6, 9, 7, 13 }, { 10, 7, 9, 13 }, { 8, 7, 11, 14 }, { 10, 11, 7, 14 } }; vtkIdType counter = 0; for (int i = 0; i < 15; i++) { for (int j = 0; j < 4; j++) { ptIds->SetId(counter, this->PointIds->GetId(ids[i][j])); pts->SetPoint(counter, this->Points->GetPoint(ids[i][j])); counter++; } } return 1; } //------------------------------------------------------------------------------ // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void vtkQuadraticWedge::JacobianInverse( const double pcoords[3], double** inverse, double derivs[45]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives vtkQuadraticWedge::InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i = 0; i < 3; i++) // initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for (j = 0; j < 15; j++) { this->Points->GetPoint(j, x); for (i = 0; i < 3; i++) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[15 + j]; m2[i] += x[i] * derivs[30 + j]; } } // now find the inverse if (vtkMath::InvertMatrix(m, inverse, 3) == 0) { vtkErrorMacro(<< "Jacobian inverse not found"); return; } } //------------------------------------------------------------------------------ void vtkQuadraticWedge::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[3 * 15], sum[3]; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k = 0; k < dim; k++) // loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for (i = 0; i < 15; i++) // loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim * i + k]; sum[1] += functionDerivs[15 + i] * values[dim * i + k]; sum[2] += functionDerivs[30 + i] * values[dim * i + k]; } for (j = 0; j < 3; j++) // loop over derivative directions { derivs[3 * k + j] = sum[0] * jI[j][0] + sum[1] * jI[j][1] + sum[2] * jI[j][2]; } } } //------------------------------------------------------------------------------ // Clip this quadratic wedge using scalar value provided. Like contouring, // except that it cuts the wedge to produce tetrahedra. void vtkQuadraticWedge::Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* tets, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { // create eight linear hexes this->Subdivide(inPd, inCd, cellId, cellScalars); // contour each linear hex separately for (int i = 0; i < 8; i++) // for each subdivided wedge { for (int j = 0; j < 6; j++) // for each of the six vertices of the wedge { this->Wedge->Points->SetPoint(j, this->Points->GetPoint(LinearWedges[i][j])); this->Wedge->PointIds->SetId(j, LinearWedges[i][j]); this->Scalars->SetValue(j, this->CellScalars->GetValue(LinearWedges[i][j])); } this->Wedge->Clip(value, this->Scalars, locator, tets, this->PointData, outPd, this->CellData, i, outCd, insideOut); } } //------------------------------------------------------------------------------ // Compute interpolation functions for the fifteen nodes. void vtkQuadraticWedge::InterpolationFunctions(const double pcoords[3], double weights[15]) { // VTK needs parametric coordinates to be between (0,1). Isoparametric // shape functions are formulated between (-1,1). Here we do a // coordinate system conversion from (0,1) to (-1,1). double r = pcoords[0]; double s = pcoords[1]; double t = pcoords[2]; // corners weights[0] = 2 * (1 - r - s) * (1 - t) * (.5 - r - s - t); weights[1] = 2 * r * (1 - t) * (r - t - 0.5); weights[2] = 2 * s * (1 - t) * (s - t - 0.5); weights[3] = 2 * (1 - r - s) * t * (t - r - s - 0.5); weights[4] = 2 * r * t * (r + t - 1.5); weights[5] = 2 * s * t * (s + t - 1.5); // midsides of triangles weights[6] = 4 * r * (1 - r - s) * (1 - t); weights[7] = 4 * r * s * (1 - t); weights[8] = 4 * (1 - r - s) * s * (1 - t); weights[9] = 4 * r * (1 - r - s) * t; weights[10] = 4 * r * s * t; weights[11] = 4 * (1 - r - s) * s * t; // midsides of rectangles weights[12] = 4 * t * (1 - r - s) * (1 - t); weights[13] = 4 * t * r * (1 - t); weights[14] = 4 * t * s * (1 - t); } //------------------------------------------------------------------------------ // Derivatives in parametric space. void vtkQuadraticWedge::InterpolationDerivs(const double pcoords[3], double derivs[45]) { // VTK needs parametric coordinates to be between (0,1). Isoparametric // shape functions are formulated between (-1,1). Here we do a // coordinate system conversion from (0,1) to (-1,1). double r = pcoords[0]; double s = pcoords[1]; double t = pcoords[2]; // r-derivatives // corners derivs[0] = 2 * (1 - t) * (-1.5 + 2 * r + 2 * s + t); derivs[1] = 2 * (1 - t) * (-0.5 + 2 * r - t); derivs[2] = 0; derivs[3] = 2 * t * (-0.5 + 2 * r + 2 * s - t); derivs[4] = 2 * t * (-1.5 + 2 * r + t); derivs[5] = 0; // midsides of triangles derivs[6] = 4 * (1 - t) * (1 - 2 * r - s); derivs[7] = 4 * (1 - t) * s; derivs[8] = -derivs[7]; derivs[9] = 4 * t * (1 - 2 * r - s); derivs[10] = 4 * s * t; derivs[11] = -derivs[10]; // midsides of rectangles derivs[12] = -4 * t * (1 - t); derivs[13] = -derivs[12]; derivs[14] = 0; // s-derivatives // corners derivs[15] = derivs[0]; derivs[16] = 0; derivs[17] = 2 * (1 - t) * (-0.5 + 2 * s - t); derivs[18] = derivs[3]; derivs[19] = 0; derivs[20] = 2 * t * (-1.5 + 2 * s + t); // midsides of triangles derivs[21] = -4 * (1 - t) * r; derivs[22] = -derivs[21]; derivs[23] = 4 * (1 - t) * (1 - r - 2 * s); derivs[24] = -4 * r * t; derivs[25] = -derivs[24]; derivs[26] = 4 * t * (1 - r - 2 * s); // midsides of rectangles derivs[27] = derivs[12]; derivs[28] = 0; derivs[29] = -derivs[27]; // t-derivatives // corners derivs[30] = 2 * (1 - r - s) * (-1.5 + r + s + 2 * t); derivs[31] = 2 * r * (-0.5 - r + 2 * t); derivs[32] = 2 * s * (-0.5 - s + 2 * t); derivs[33] = 2 * (1 - r - s) * (-0.5 - r - s + 2 * t); derivs[34] = 2 * r * (-1.5 + r + 2 * t); derivs[35] = 2 * s * (-1.5 + s + 2 * t); // midsides of triangles derivs[36] = -4 * r * (1 - r - s); derivs[37] = -4 * r * s; derivs[38] = -4 * s * (1 - r - s); derivs[39] = -derivs[36]; derivs[40] = -derivs[37]; derivs[41] = -derivs[38]; // midsides of rectangles derivs[42] = 4 * (1 - 2 * t) * (1 - r - s); derivs[43] = 4 * (1 - 2 * t) * r; derivs[44] = 4 * (1 - 2 * t) * s; } //------------------------------------------------------------------------------ static double vtkQWedgeCellPCoords[45] = { 0.0, 0.0, 0.0, // 1.0, 0.0, 0.0, // 0.0, 1.0, 0.0, // 0.0, 0.0, 1.0, // 1.0, 0.0, 1.0, // 0.0, 1.0, 1.0, // 0.5, 0.0, 0.0, // 0.5, 0.5, 0.0, // 0.0, 0.5, 0.0, // 0.5, 0.0, 1.0, // 0.5, 0.5, 1.0, // 0.0, 0.5, 1.0, // 0.0, 0.0, 0.5, // 1.0, 0.0, 0.5, // 0.0, 1.0, 0.5 // }; double* vtkQuadraticWedge::GetParametricCoords() { return vtkQWedgeCellPCoords; } //------------------------------------------------------------------------------ void vtkQuadraticWedge::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Edge:\n"; this->Edge->PrintSelf(os, indent.GetNextIndent()); os << indent << "TriangleFace:\n"; this->TriangleFace->PrintSelf(os, indent.GetNextIndent()); os << indent << "Face:\n"; this->Face->PrintSelf(os, indent.GetNextIndent()); os << indent << "Wedge:\n"; this->Wedge->PrintSelf(os, indent.GetNextIndent()); os << indent << "PointData:\n"; this->PointData->PrintSelf(os, indent.GetNextIndent()); os << indent << "CellData:\n"; this->CellData->PrintSelf(os, indent.GetNextIndent()); os << indent << "Scalars:\n"; this->Scalars->PrintSelf(os, indent.GetNextIndent()); }