/*========================================================================= Program: Visualization Toolkit Module: vtkStaticPointLocator.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkStaticPointLocator.h" #include "vtkBoundingBox.h" #include "vtkBox.h" #include "vtkCellArray.h" #include "vtkDataArray.h" #include "vtkIdList.h" #include "vtkIntArray.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPoints.h" #include "vtkPolyData.h" #include "vtkSMPThreadLocal.h" #include "vtkSMPThreadLocalObject.h" #include "vtkSMPTools.h" #include "vtkStructuredData.h" #include vtkStandardNewMacro(vtkStaticPointLocator); // There are stack-allocated bucket neighbor lists. This is the initial // value. Too small and heap allocation kicks in. #define VTK_INITIAL_BUCKET_SIZE 10000 //------------------------------------------------------------------------------ // The following code supports threaded point locator construction. The locator // is assumed to be constructed once (i.e., it does not allow incremental point // insertion). The algorithm proceeds in three steps: // 1) All points are assigned a bucket index (combined i-j-k bucket location). // The index is computed in parallel. This requires a one time allocation of an // index array (which is also associated with the originating point ids). // 2) vtkSMPTools::Sort() is used to sort the index array. Note that the sort // carries along the point ids as well. This creates contiguous runs of points // all resident in the same bucket. // 3) The bucket offsets are updated to refer to the right entry location into // the sorted point ids array. This enables quick access, and an indirect count // of the number of points in each bucket. // Believe it or not I had to change the name because MS Visual Studio was // mistakenly linking the hidden, scoped classes (vtkNeighborBuckets) found // in vtkPointLocator and vtkStaticPointLocator and causing weird faults. struct NeighborBuckets; //------------------------------------------------------------------------------ // The bucketed points, including the sorted map. This is just a PIMPLd // wrapper around the classes that do the real work. struct vtkBucketList { vtkStaticPointLocator* Locator; // locater vtkIdType NumPts; // the number of points to bucket vtkIdType NumBuckets; int BatchSize; // These are internal data members used for performance reasons vtkDataSet* DataSet; int Divisions[3]; double Bounds[6]; double H[3]; double hX, hY, hZ; double fX, fY, fZ, bX, bY, bZ; vtkIdType xD, yD, zD, xyD; // Construction vtkBucketList(vtkStaticPointLocator* loc, vtkIdType numPts, int numBuckets) { this->Locator = loc; this->NumPts = numPts; this->NumBuckets = numBuckets; this->BatchSize = 10000; // building the offset array this->DataSet = loc->GetDataSet(); loc->GetDivisions(this->Divisions); // Setup internal data members for more efficient processing. double spacing[3], bounds[6]; loc->GetDivisions(this->Divisions); loc->GetSpacing(spacing); loc->GetBounds(bounds); this->hX = this->H[0] = spacing[0]; this->hY = this->H[1] = spacing[1]; this->hZ = this->H[2] = spacing[2]; this->fX = 1.0 / spacing[0]; this->fY = 1.0 / spacing[1]; this->fZ = 1.0 / spacing[2]; this->bX = this->Bounds[0] = bounds[0]; this->Bounds[1] = bounds[1]; this->bY = this->Bounds[2] = bounds[2]; this->Bounds[3] = bounds[3]; this->bZ = this->Bounds[4] = bounds[4]; this->Bounds[5] = bounds[5]; this->xD = this->Divisions[0]; this->yD = this->Divisions[1]; this->zD = this->Divisions[2]; this->xyD = this->Divisions[0] * this->Divisions[1]; } // Virtuals for templated subclasses virtual ~vtkBucketList() = default; virtual void BuildLocator() = 0; // place points in appropriate buckets void GetBucketNeighbors( NeighborBuckets* buckets, const int ijk[3], const int ndivs[3], int level); void GenerateFace(int face, int i, int j, int k, vtkPoints* pts, vtkCellArray* polys); double Distance2ToBucket(const double x[3], const int nei[3]); double Distance2ToBounds(const double x[3], const double bounds[6]); //----------------------------------------------------------------------------- // Inlined for performance. These function invocations must be called after // BuildLocator() is invoked, otherwise the output is indeterminate. void GetBucketIndices(const double* x, int ijk[3]) const { // Compute point index. Make sure it lies within range of locator. vtkIdType tmp0 = static_cast(((x[0] - bX) * fX)); vtkIdType tmp1 = static_cast(((x[1] - bY) * fY)); vtkIdType tmp2 = static_cast(((x[2] - bZ) * fZ)); ijk[0] = tmp0 < 0 ? 0 : (tmp0 >= xD ? xD - 1 : tmp0); ijk[1] = tmp1 < 0 ? 0 : (tmp1 >= yD ? yD - 1 : tmp1); ijk[2] = tmp2 < 0 ? 0 : (tmp2 >= zD ? zD - 1 : tmp2); } //----------------------------------------------------------------------------- vtkIdType GetBucketIndex(const double* x) const { int ijk[3]; this->GetBucketIndices(x, ijk); return ijk[0] + ijk[1] * xD + ijk[2] * xyD; } }; //------------------------------------------------------------------------------ // Utility class to store an array of ijk values struct NeighborBuckets { NeighborBuckets() { this->Count = 0; this->P = this->InitialBuffer; this->MaxSize = VTK_INITIAL_BUCKET_SIZE; } ~NeighborBuckets() { this->Count = 0; if (this->P != this->InitialBuffer) { delete[] this->P; } } int GetNumberOfNeighbors() { return this->Count; } void Reset() { this->Count = 0; } int* GetPoint(vtkIdType i) { return this->P + 3 * i; } vtkIdType InsertNextBucket(const int x[3]) { // Re-allocate if beyond the current max size. // (Increase by VTK_INITIAL_BUCKET_SIZE) int* tmp; vtkIdType offset = this->Count * 3; if (this->Count >= this->MaxSize) { tmp = this->P; this->MaxSize *= 2; this->P = new int[this->MaxSize * 3]; memcpy(this->P, tmp, offset * sizeof(int)); if (tmp != this->InitialBuffer) { delete[] tmp; } } tmp = this->P + offset; *tmp++ = *x++; *tmp++ = *x++; *tmp = *x; this->Count++; return this->Count - 1; } protected: // Start with an array to avoid memory allocation overhead int InitialBuffer[VTK_INITIAL_BUCKET_SIZE * 3]; int* P; vtkIdType Count; vtkIdType MaxSize; }; //------------------------------------------------------------------------------ // Internal function to get bucket neighbors at specified level // void vtkBucketList::GetBucketNeighbors( NeighborBuckets* buckets, const int ijk[3], const int ndivs[3], int level) { int i, j, k, min, max, minLevel[3], maxLevel[3]; int nei[3]; // Initialize // buckets->Reset(); // If at this bucket, just place into list // if (level == 0) { buckets->InsertNextBucket(ijk); return; } // Create permutations of the ijk indices that are at the level // required. If these are legal buckets, add to list for searching. // for (i = 0; i < 3; i++) { min = ijk[i] - level; max = ijk[i] + level; minLevel[i] = (min > 0 ? min : 0); maxLevel[i] = (max < (ndivs[i] - 1) ? max : (ndivs[i] - 1)); } for (i = minLevel[0]; i <= maxLevel[0]; i++) { for (j = minLevel[1]; j <= maxLevel[1]; j++) { for (k = minLevel[2]; k <= maxLevel[2]; k++) { if (i == (ijk[0] + level) || i == (ijk[0] - level) || j == (ijk[1] + level) || j == (ijk[1] - level) || k == (ijk[2] + level) || k == (ijk[2] - level)) { nei[0] = i; nei[1] = j; nei[2] = k; buckets->InsertNextBucket(nei); } } } } } //------------------------------------------------------------------------------ void vtkBucketList::GenerateFace(int face, int i, int j, int k, vtkPoints* pts, vtkCellArray* polys) { vtkIdType ids[4]; double origin[3], x[3]; // define first corner origin[0] = this->bX + i * this->hX; origin[1] = this->bY + j * this->hY; origin[2] = this->bZ + k * this->hZ; ids[0] = pts->InsertNextPoint(origin); if (face == 0) // x face { x[0] = origin[0]; x[1] = origin[1] + this->hY; x[2] = origin[2]; ids[1] = pts->InsertNextPoint(x); x[0] = origin[0]; x[1] = origin[1] + this->hY; x[2] = origin[2] + this->hZ; ids[2] = pts->InsertNextPoint(x); x[0] = origin[0]; x[1] = origin[1]; x[2] = origin[2] + this->hZ; ids[3] = pts->InsertNextPoint(x); } else if (face == 1) // y face { x[0] = origin[0] + this->hX; x[1] = origin[1]; x[2] = origin[2]; ids[1] = pts->InsertNextPoint(x); x[0] = origin[0] + this->hX; x[1] = origin[1]; x[2] = origin[2] + this->hZ; ids[2] = pts->InsertNextPoint(x); x[0] = origin[0]; x[1] = origin[1]; x[2] = origin[2] + this->hZ; ids[3] = pts->InsertNextPoint(x); } else // z face { x[0] = origin[0] + this->hX; x[1] = origin[1]; x[2] = origin[2]; ids[1] = pts->InsertNextPoint(x); x[0] = origin[0] + this->hX; x[1] = origin[1] + this->hY; x[2] = origin[2]; ids[2] = pts->InsertNextPoint(x); x[0] = origin[0]; x[1] = origin[1] + this->hY; x[2] = origin[2]; ids[3] = pts->InsertNextPoint(x); } polys->InsertNextCell(4, ids); } //------------------------------------------------------------------------------ // Calculate the distance between the point x to the bucket "nei". // // WARNING!!!!! Be very careful altering this routine. Simple changes to this // routine can make is 25% slower!!!! // double vtkBucketList::Distance2ToBucket(const double x[3], const int nei[3]) { double bounds[6]; bounds[0] = nei[0] * this->hX + this->bX; bounds[1] = (nei[0] + 1) * this->hX + this->bX; bounds[2] = nei[1] * this->hY + this->bY; bounds[3] = (nei[1] + 1) * this->hY + this->bY; bounds[4] = nei[2] * this->hZ + this->bZ; bounds[5] = (nei[2] + 1) * this->hZ + this->bZ; return this->Distance2ToBounds(x, bounds); } //------------------------------------------------------------------------------ // Calculate the distance between the point x and the specified bounds // // WARNING!!!!! Be very careful altering this routine. Simple changes to this // routine can make is 25% slower!!!! double vtkBucketList::Distance2ToBounds(const double x[3], const double bounds[6]) { double distance; double deltas[3]; // Are we within the bounds? if (x[0] >= bounds[0] && x[0] <= bounds[1] && x[1] >= bounds[2] && x[1] <= bounds[3] && x[2] >= bounds[4] && x[2] <= bounds[5]) { return 0.0; } deltas[0] = deltas[1] = deltas[2] = 0.0; // dx // if (x[0] < bounds[0]) { deltas[0] = bounds[0] - x[0]; } else if (x[0] > bounds[1]) { deltas[0] = x[0] - bounds[1]; } // dy // if (x[1] < bounds[2]) { deltas[1] = bounds[2] - x[1]; } else if (x[1] > bounds[3]) { deltas[1] = x[1] - bounds[3]; } // dz // if (x[2] < bounds[4]) { deltas[2] = bounds[4] - x[2]; } else if (x[2] > bounds[5]) { deltas[2] = x[2] - bounds[5]; } distance = vtkMath::Dot(deltas, deltas); return distance; } //------------------------------------------------------------------------------ // The following tuple is what is sorted in the map. Note that it is templated // because depending on the number of points / buckets to process we may want // to use vtkIdType. Otherwise for performance reasons it's best to use an int // (or other integral type). Typically sort() is 25-30% faster on smaller // integral types, plus it takes a heck less memory (when vtkIdType is 64-bit // and int is 32-bit). template struct LocatorTuple { TTuple PtId; // originating point id TTuple Bucket; // i-j-k index into bucket space // Operator< used to support the subsequent sort operation. There are two // implementations, one gives a stable sort (points ordered by id within // each bucket) and the other a little faster but less stable (in parallel // sorting the order of sorted points in a bucket may vary). // bool operator< (const LocatorTuple& tuple) const // {return Bucket < tuple.Bucket;} bool operator<(const LocatorTuple& tuple) const { if (Bucket < tuple.Bucket) return true; if (tuple.Bucket < Bucket) return false; if (PtId < tuple.PtId) return true; return false; } }; //------------------------------------------------------------------------------ // This templates class manages the creation of the static locator // structures. It also implements the operator() functors which are supplied // to vtkSMPTools for threaded processesing. template struct BucketList : public vtkBucketList { // Okay the various ivars LocatorTuple* Map; // the map to be sorted TIds* Offsets; // offsets for each bucket into the map // Construction BucketList(vtkStaticPointLocator* loc, vtkIdType numPts, int numBuckets) : vtkBucketList(loc, numPts, numBuckets) { // one extra to simplify traversal this->Map = new LocatorTuple[numPts + 1]; this->Map[numPts].Bucket = numBuckets; this->Offsets = new TIds[numBuckets + 1]; this->Offsets[numBuckets] = numPts; } // Release allocated memory ~BucketList() override { delete[] this->Map; delete[] this->Offsets; } // The number of point ids in a bucket is determined by computing the // difference between the offsets into the sorted points array. vtkIdType GetNumberOfIds(vtkIdType bucketNum) { return (this->Offsets[bucketNum + 1] - this->Offsets[bucketNum]); } // Given a bucket number, return the point ids in that bucket. const LocatorTuple* GetIds(vtkIdType bucketNum) { return this->Map + this->Offsets[bucketNum]; } // Given a bucket number, return the point ids in that bucket. void GetIds(vtkIdType bucketNum, vtkIdList* bList) { const LocatorTuple* ids = this->GetIds(bucketNum); vtkIdType numIds = this->GetNumberOfIds(bucketNum); bList->SetNumberOfIds(numIds); for (int i = 0; i < numIds; i++) { bList->SetId(i, ids[i].PtId); } } // Templated implementations of the locator vtkIdType FindClosestPoint(const double x[3]); vtkIdType FindClosestPointWithinRadius( double radius, const double x[3], double inputDataLength, double& dist2); void FindClosestNPoints(int N, const double x[3], vtkIdList* result); void FindPointsWithinRadius(double R, const double x[3], vtkIdList* result); int IntersectWithLine(double a0[3], double a1[3], double tol, double& t, double lineX[3], double ptX[3], vtkIdType& ptId); void MergePoints(double tol, vtkIdType* pointMap, int orderingMode); void MergePointsWithData(vtkDataArray* data, vtkIdType* pointMap); void GenerateRepresentation(int vtkNotUsed(level), vtkPolyData* pd); // Internal methods void GetOverlappingBuckets( NeighborBuckets* buckets, const double x[3], const int ijk[3], double dist, int level); void GetOverlappingBuckets(NeighborBuckets* buckets, const double x[3], double dist, int prevMinLevel[3], int prevMaxLevel[3]); // Implicit point representation, slower path template struct MapDataSet { BucketList* BList; vtkDataSet* DataSet; MapDataSet(BucketList* blist, vtkDataSet* ds) : BList(blist) , DataSet(ds) { } void operator()(vtkIdType ptId, vtkIdType end) { double p[3]; LocatorTuple* t = this->BList->Map + ptId; for (; ptId < end; ++ptId, ++t) { this->DataSet->GetPoint(ptId, p); t->Bucket = this->BList->GetBucketIndex(p); t->PtId = ptId; } // for all points in this batch } }; // Explicit point representation (e.g., vtkPointSet), faster path template struct MapPointsArray { BucketList* BList; const TPts* Points; MapPointsArray(BucketList* blist, const TPts* pts) : BList(blist) , Points(pts) { } void operator()(vtkIdType ptId, vtkIdType end) { double p[3]; const TPts* x = this->Points + 3 * ptId; LocatorTuple* t = this->BList->Map + ptId; for (; ptId < end; ++ptId, x += 3, ++t) { p[0] = static_cast(x[0]); p[1] = static_cast(x[1]); p[2] = static_cast(x[2]); t->Bucket = this->BList->GetBucketIndex(p); t->PtId = ptId; } // for all points in this batch } }; // A clever way to build offsets in parallel. Basically each thread builds // offsets across a range of the sorted map. Recall that offsets are an // integral value referring to the locations of the sorted points that // reside in each bucket. template struct MapOffsets { BucketList* BList; int NumBuckets; vtkIdType NumPts; MapOffsets(BucketList* blist) : BList(blist) { this->NumBuckets = this->BList->NumBuckets; this->NumPts = this->BList->NumPts; } // Traverse sorted points (i.e., tuples) and update bucket offsets. void operator()(vtkIdType batch, vtkIdType batchEnd) { T* offsets = this->BList->Offsets; const LocatorTuple* curPt = this->BList->Map + batch * this->BList->BatchSize; const LocatorTuple* endBatchPt = this->BList->Map + batchEnd * this->BList->BatchSize; const LocatorTuple* endPt = this->BList->Map + this->NumPts; const LocatorTuple* prevPt; endBatchPt = (endBatchPt > endPt ? endPt : endBatchPt); // Special case at the very beginning of the mapped points array. If // the first point is in bucket# N, then all buckets up and including // N must refer to the first point. if (curPt == this->BList->Map) { prevPt = this->BList->Map; std::fill_n(offsets, curPt->Bucket + 1, 0); // point to the first points } // at the very beginning of the map (sorted points array) // We are entering this functor somewhere in the interior of the // mapped points array. All we need to do is point to the entry // position because we are interested only in prevPt->Bucket. else { prevPt = curPt; } // else in the middle of a batch // Okay we have a starting point for a bucket run. Now we can begin // filling in the offsets in this batch. A previous thread should // have/will have completed the previous and subsequent runs outside // of the [batch,batchEnd) range for (curPt = prevPt; curPt < endBatchPt;) { for (; curPt->Bucket == prevPt->Bucket && curPt <= endBatchPt; ++curPt) { ; // advance } // Fill in any gaps in the offset array std::fill_n( offsets + prevPt->Bucket + 1, curPt->Bucket - prevPt->Bucket, curPt - this->BList->Map); prevPt = curPt; } // for all batches in this range } // operator() }; // Merge points that are pecisely coincident. Operates in parallel on // locator buckets. Does not need to check neighbor buckets. template struct MergePrecise { BucketList* BList; vtkDataSet* DataSet; vtkIdType* MergeMap; MergePrecise(BucketList* blist, vtkIdType* mergeMap) : BList(blist) , MergeMap(mergeMap) { this->DataSet = blist->DataSet; } void operator()(vtkIdType bucket, vtkIdType endBucket) { BucketList* bList = this->BList; vtkIdType* mergeMap = this->MergeMap; int i, j; const LocatorTuple* ids; double p[3], p2[3]; vtkIdType ptId, ptId2, numIds; for (; bucket < endBucket; ++bucket) { if ((numIds = bList->GetNumberOfIds(bucket)) > 0) { ids = bList->GetIds(bucket); for (i = 0; i < numIds; i++) { ptId = ids[i].PtId; if (mergeMap[ptId] < 0) { mergeMap[ptId] = ptId; this->DataSet->GetPoint(ptId, p); for (j = i + 1; j < numIds; j++) { ptId2 = ids[j].PtId; if (mergeMap[ptId2] < 0) { this->DataSet->GetPoint(ptId2, p2); if (p[0] == p2[0] && p[1] == p2[1] && p[2] == p2[2]) { mergeMap[ptId2] = ptId; } } } } // if point not yet visited } } } } }; // Merge points that are coincident within a specified tolerance. Depending // on the orderingMode, either a serialized ordering process is used (i.e., // POINT_ORDER) or a threaded ordering process is used (i.e., // BIN_ORDER). Note that due to the tolerance, the merging tolerance // needs to check neighbor buckets which slows the algorithm down // considerably. Note that merging is in one direction: larger ids are // merged to lower ids. template struct MergeClose { BucketList* BList; vtkDataSet* DataSet; vtkIdType* MergeMap; double Tol; vtkSMPThreadLocalObject PIds; MergeClose(BucketList* blist, double tol, vtkIdType* mergeMap) : BList(blist) , MergeMap(mergeMap) , Tol(tol) { this->DataSet = blist->DataSet; } // The core merging process around the point ptId. inline void MergePoint(vtkIdType ptId, vtkIdList* nearby) { vtkIdType* mergeMap = this->MergeMap; // Make sure the point is not already merged if (mergeMap[ptId] < 0) { mergeMap[ptId] = ptId; double p[3]; this->DataSet->GetPoint(ptId, p); this->BList->FindPointsWithinRadius(this->Tol, p, nearby); vtkIdType numIds = nearby->GetNumberOfIds(); if (numIds > 0) { for (auto i = 0; i < numIds; ++i) { vtkIdType nearId = nearby->GetId(i); if (mergeMap[nearId] < 0) { mergeMap[nearId] = ptId; } // if eligible for merging and not yet merged } // for all nearby points } // if nearby points exist } // if point not yet merged } // MergePoint // Just allocate a little bit of memory to get started. void Initialize() { vtkIdList*& pIds = this->PIds.Local(); pIds->Allocate(128); // allocate some memory } void Reduce() {} }; // Merge points with non-zero tolerance. Order of point merging guarantees // that any two merged point ids (p0,p1) are such that p0 struct MergePointOrder : public MergeClose { MergePointOrder(BucketList* blist, double tol, vtkIdType* mergeMap) : MergeClose(blist, tol, mergeMap) { } void Initialize() { this->MergeClose::Initialize(); } // Process serially, point by point. void operator()(vtkIdType numPts) { vtkIdList*& nearby = this->PIds.Local(); // Serial operation over all points in the locator. for (vtkIdType ptId = 0; ptId < numPts; ++ptId) { this->MergePoint(ptId, nearby); } // for all points in the locator } // operator() void Reduce() { this->MergeClose::Reduce(); } }; // Merge points in point ordering // Merge points with non-zero tolerance. The order of point merging depends // on the order in which the bins are traversed (using a checkerboard // pattern). While the algorithm is threaded, the checkerboarding acts as // a barrier to full threading so the performance is not optimal (but at // least deterministic / reproducible). // // Checkerboarding works as follows. The locator bin volume of dimensions // Divisions[3] is divided into a collection of "blocks" which are // subvolumes of bins of dimensions d^3. The algorithm makes multiple, // threaded passes over the blocks (a total of d^3 threaded traversals), // choosing one of the bins in each block to process via the current // checkerboard index. The dimension d of the blocks is determined by the // tolerance and locator bin size, and is chosen in such a way as to // separate the point merging computation so as to avoid threading data // races / write contention. template struct MergeBinOrder : public MergeClose { int CheckerboardDimension; // the dimension of the checkerboard block/subvolume int NumBlocks; // how many blocks/subvolumes are in the binned locator int BlockDims[3]; // the number of blocks in each coordinate direction int CheckerboardIndex[3]; // which bin is being processed in the blocks // The main function of the constructor is the setup the checkerboard // traversal. This means configuring the checkerboard subvolume, and // set up the traversal indices. MergeBinOrder(BucketList* blist, double tol, vtkIdType* mergeMap) : MergeClose(blist, tol, mergeMap) { BucketList* bl = this->BList; double hMin = (bl->hX < bl->hY ? (bl->hX < bl->hZ ? bl->hX : bl->hZ) : (bl->hY < bl->hZ ? bl->hY : bl->hZ)); this->CheckerboardDimension = 1 + (hMin == 0.0 ? 1 : (1 + vtkMath::Floor(tol / (hMin / 2.0)))); // Determine how many blocks there are in the locater, and determine the // dimensions of the blocks. this->NumBlocks = 1; for (auto i = 0; i < 3; ++i) { double numBlocks = static_cast(bl->Divisions[i]) / static_cast(this->CheckerboardDimension); this->BlockDims[i] = (bl->Divisions[i] <= 1 ? 1 : vtkMath::Ceil(numBlocks)); this->NumBlocks *= this->BlockDims[i]; } this->InitializeCheckerboardIndex(); } // Initialize the checkerboard traversal process. A pointer to the // current traversal state (within the checkerboard region) is returned. int* InitializeCheckerboardIndex() { // Control checkerboard traversal this->CheckerboardIndex[0] = 0; this->CheckerboardIndex[1] = 0; this->CheckerboardIndex[2] = 0; return this->CheckerboardIndex; } // Given a blockId and the current checkerboard index, compute the // current locator bin/bucket id. May return <0 if no bin exists. vtkIdType GetCurrentBin(int blockId, int cIdx[3]) { // Which checkerboard block are we in? int ijk[3]; vtkStructuredData::ComputePointStructuredCoords(blockId, this->BlockDims, ijk); // Combine the block index with the checkerboard index. Make sure that // we are still inside the locator bins (partial blocks may exist at // the boundary). Recall that the blocks are composed of d^3 bins. for (auto i = 0; i < 3; ++i) { ijk[i] = ijk[i] * this->CheckerboardDimension + cIdx[i]; if (ijk[i] >= this->BList->Divisions[i]) { return (-1); } } // Okay return the bin index return (ijk[0] + ijk[1] * this->BList->Divisions[0] + ijk[2] * this->BList->Divisions[0] * this->BList->Divisions[1]); } void Initialize() { this->MergeClose::Initialize(); } // Process locator blocks/subvolumes. void operator()(vtkIdType blockId, vtkIdType endBlockId) { for (; blockId < endBlockId; ++blockId) { vtkIdType bin = this->GetCurrentBin(blockId, this->CheckerboardIndex); vtkIdType numIds; if (bin >= 0 && (numIds = this->BList->GetNumberOfIds(bin)) > 0) { const LocatorTuple* ids = this->BList->GetIds(bin); for (auto i = 0; i < numIds; ++i) { vtkIdType ptId = ids[i].PtId; vtkIdList*& nearby = this->PIds.Local(); this->MergePoint(ptId, nearby); } // for all points in bin/bucket } // if points exist in bin/bucket } // for all blocks } // operator() void Reduce() { this->MergeClose::Reduce(); } // Coordinate the checkerboard threading process. Checkerboarding simply // processes a subset of the locator bins to avoid write contention. The // checkerboard footprint (its subvolume size) is a function of the // tolerance, and is effectively a d^3 subvolume that is traversed // (across all subvolumes) in a synchronized fashion. Hence there are d^3 // separate SMP traversals - if d becomes too large, the fallback is // simply a serial (MergePointOrder()) to avoid thread thrashing. void Execute() { int cDim = this->CheckerboardDimension; int* cIdx = this->InitializeCheckerboardIndex(); // Coordinate the checkerboarding by synchronized traversal of the // the checkerboard subblocks. for (cIdx[2] = 0; cIdx[2] < cDim; ++cIdx[2]) { for (cIdx[1] = 0; cIdx[1] < cDim; ++cIdx[1]) { for (cIdx[0] = 0; cIdx[0] < cDim; ++cIdx[0]) { vtkSMPTools::For(0, this->NumBlocks, *this); } } } } // Execute() }; // MergeBinOrder // Merge points that are geometrically coincident and have matching data // values. Operates in parallel on locator buckets. Does not need to check // neighbor buckets. template struct MergePointsAndData { BucketList* BList; vtkDataSet* DataSet; vtkDataArray* DataArray; vtkIdType* MergeMap; vtkSMPThreadLocal> Tuple; vtkSMPThreadLocal> Tuple2; MergePointsAndData(BucketList* blist, vtkDataArray* da, vtkIdType* mergeMap) : BList(blist) , DataArray(da) , MergeMap(mergeMap) { this->DataSet = blist->DataSet; } bool TuplesEqual(int tupleSize, double* t1, double* t2) { for (auto i = 0; i < tupleSize; ++i) { if (t1[i] != t2[i]) { return false; } } return true; } void Initialize() { vtkIdType numComp = this->DataArray->GetNumberOfComponents(); this->Tuple.Local().resize(numComp); this->Tuple2.Local().resize(numComp); } void operator()(vtkIdType bucket, vtkIdType endBucket) { BucketList* bList = this->BList; vtkIdType* mergeMap = this->MergeMap; int i, j; const LocatorTuple* ids; double p[3], p2[3]; vtkIdType ptId, ptId2, numIds; int tupleSize = static_cast(this->Tuple.Local().size()); double* t = this->Tuple.Local().data(); double* t2 = this->Tuple2.Local().data(); for (; bucket < endBucket; ++bucket) { if ((numIds = bList->GetNumberOfIds(bucket)) > 0) { ids = bList->GetIds(bucket); for (i = 0; i < numIds; i++) { ptId = ids[i].PtId; if (mergeMap[ptId] < 0) { mergeMap[ptId] = ptId; this->DataSet->GetPoint(ptId, p); this->DataArray->GetTuple(ptId, t); for (j = i + 1; j < numIds; j++) { ptId2 = ids[j].PtId; if (mergeMap[ptId2] < 0) { this->DataSet->GetPoint(ptId2, p2); if (p[0] == p2[0] && p[1] == p2[1] && p[2] == p2[2]) { this->DataArray->GetTuple(ptId2, t2); if (this->TuplesEqual(tupleSize, t, t2)) { mergeMap[ptId2] = ptId; } // if point's data match } // if points geometrically coincident } // if point not yet visited } // for the remaining points in the bin } // if point not yet merged } // for all points in bucket } // if bucket contains points } // for all buckets } // operator() void Reduce() {} }; // MergePointsWithData // Build the map and other structures to support locator operations void BuildLocator() override { // Place each point in a bucket // vtkPointSet* ps = vtkPointSet::SafeDownCast(this->DataSet); if (ps) { // map points array: explicit points representation of float or double int dataType = ps->GetPoints()->GetDataType(); void* pts = ps->GetPoints()->GetVoidPointer(0); if (dataType == VTK_FLOAT) { MapPointsArray mapper(this, static_cast(pts)); vtkSMPTools::For(0, this->NumPts, mapper); } else if (dataType == VTK_DOUBLE) { MapPointsArray mapper(this, static_cast(pts)); vtkSMPTools::For(0, this->NumPts, mapper); } } else // if (!mapped) { // map dataset points: non-float points or implicit points representation MapDataSet mapper(this, this->DataSet); vtkSMPTools::For(0, this->NumPts, mapper); } // Now group the points into contiguous runs within buckets (recall that // sorting is occurring based on bin/bucket id). vtkSMPTools::Sort(this->Map, this->Map + this->NumPts); // Build the offsets into the Map. The offsets are the positions of // each bucket into the sorted list. They mark the beginning of the // list of points in each bucket. Amazingly, this can be done in // parallel. int numBatches = static_cast(ceil(static_cast(this->NumPts) / this->BatchSize)); MapOffsets offMapper(this); vtkSMPTools::For(0, numBatches, offMapper); } }; //------------------------------------------------------------------------------ // Given a position x, return the id of the point closest to it. template vtkIdType BucketList::FindClosestPoint(const double x[3]) { int i, j; double minDist2; double dist2 = VTK_DOUBLE_MAX; double pt[3]; int closest, level; vtkIdType ptId, cno, numIds; int ijk[3], *nei; NeighborBuckets buckets; const LocatorTuple* ids; // Find bucket point is in. // this->GetBucketIndices(x, ijk); // Need to search this bucket for the closest point. If there are no // points in this bucket, search 1st level neighbors, and so on, until // closest point found. // for (closest = (-1), minDist2 = VTK_DOUBLE_MAX, level = 0; (closest == -1) && (level < this->Divisions[0] || level < this->Divisions[1] || level < this->Divisions[2]); level++) { this->GetBucketNeighbors(&buckets, ijk, this->Divisions, level); for (i = 0; i < buckets.GetNumberOfNeighbors(); i++) { nei = buckets.GetPoint(i); cno = nei[0] + nei[1] * this->xD + nei[2] * this->xyD; if ((numIds = this->GetNumberOfIds(cno)) > 0) { ids = this->GetIds(cno); for (j = 0; j < numIds; j++) { ptId = ids[j].PtId; this->DataSet->GetPoint(ptId, pt); if ((dist2 = vtkMath::Distance2BetweenPoints(x, pt)) < minDist2) { closest = ptId; minDist2 = dist2; } } } } } // // Because of the relative location of the points in the buckets, the // point found previously may not be the closest point. We have to // search those bucket neighbors that might also contain the point. // if (minDist2 > 0.0) { this->GetOverlappingBuckets(&buckets, x, ijk, sqrt(minDist2), 0); for (i = 0; i < buckets.GetNumberOfNeighbors(); i++) { nei = buckets.GetPoint(i); cno = nei[0] + nei[1] * this->xD + nei[2] * this->xyD; if ((numIds = this->GetNumberOfIds(cno)) > 0) { ids = this->GetIds(cno); for (j = 0; j < numIds; j++) { ptId = ids[j].PtId; this->DataSet->GetPoint(ptId, pt); if ((dist2 = vtkMath::Distance2BetweenPoints(x, pt)) < minDist2) { closest = ptId; minDist2 = dist2; } } // for each point } // if points in bucket } // for each overlapping bucket } // if not identical point return closest; } //------------------------------------------------------------------------------ template vtkIdType BucketList::FindClosestPointWithinRadius( double radius, const double x[3], double inputDataLength, double& dist2) { int i, j; double pt[3]; vtkIdType ptId, closest = -1; int ijk[3], *nei; double minDist2; double refinedRadius, radius2, refinedRadius2; double currentRadius; double distance2ToDataBounds, maxDistance; int ii, radiusLevels[3], radiusLevel, prevMinLevel[3], prevMaxLevel[3]; NeighborBuckets buckets; const LocatorTuple* ids; // Initialize dist2 = -1.0; radius2 = radius * radius; minDist2 = 1.01 * radius2; // something slightly bigger.... vtkDataArray* pointData = static_cast(this->DataSet)->GetPoints()->GetData(); // Find the bucket the point is in. // this->GetBucketIndices(x, ijk); // Start by searching the bucket that the point is in. // vtkIdType numIds; vtkIdType cno = ijk[0] + ijk[1] * this->xD + ijk[2] * this->xyD; if ((numIds = this->GetNumberOfIds(cno)) > 0) { ids = this->GetIds(cno); for (j = 0; j < numIds; j++) { ptId = ids[j].PtId; pointData->GetTuple(ptId, pt); if ((dist2 = vtkMath::Distance2BetweenPoints(x, pt)) < minDist2) { closest = ptId; minDist2 = dist2; } } } // Now, search only those buckets that are within a radius. The radius used // is the smaller of sqrt(minDist2) and the radius that is passed in. To avoid // checking a large number of buckets unnecessarily, if the radius is // larger than the dimensions of a bucket, we search outward using a // simple heuristic of rings. This heuristic ends up collecting inner // buckets multiple times, but this only happens in the case where these // buckets are empty, so they are discarded quickly. // if (minDist2 < radius2) { refinedRadius = sqrt(minDist2); refinedRadius2 = dist2; } else { refinedRadius = radius; refinedRadius2 = radius2; } if (inputDataLength != 0.0) { distance2ToDataBounds = this->Distance2ToBounds(x, this->Bounds); maxDistance = sqrt(distance2ToDataBounds) + inputDataLength; if (refinedRadius > maxDistance) { refinedRadius = maxDistance; refinedRadius2 = maxDistance * maxDistance; } } for (i = 0; i < 3; i++) { radiusLevels[i] = static_cast(refinedRadius / this->H[i]); if (radiusLevels[i] > this->Divisions[i] / 2) { radiusLevels[i] = this->Divisions[i] / 2; } } radiusLevel = radiusLevels[0]; radiusLevel = radiusLevels[1] > radiusLevel ? radiusLevels[1] : radiusLevel; radiusLevel = radiusLevels[2] > radiusLevel ? radiusLevels[2] : radiusLevel; if (radiusLevel == 0) { radiusLevel = 1; } // radius schedule increases the radius each iteration, this is currently // implemented by decreasing ii by 1 each iteration. another alternative // is to double the radius each iteration, i.e. ii = ii >> 1 // In practice, reducing ii by one has been found to be more efficient. prevMinLevel[0] = prevMaxLevel[0] = ijk[0]; prevMinLevel[1] = prevMaxLevel[1] = ijk[1]; prevMinLevel[2] = prevMaxLevel[2] = ijk[2]; for (ii = radiusLevel; ii >= 1; ii--) { currentRadius = refinedRadius; // used in if at bottom of this for loop // Build up a list of buckets that are arranged in rings this->GetOverlappingBuckets(&buckets, x, refinedRadius / ii, prevMinLevel, prevMaxLevel); for (i = 0; i < buckets.GetNumberOfNeighbors(); i++) { nei = buckets.GetPoint(i); // do we still need to test this bucket? if (this->Distance2ToBucket(x, nei) < refinedRadius2) { cno = nei[0] + nei[1] * this->xD + nei[2] * this->xyD; if ((numIds = this->GetNumberOfIds(cno)) > 0) { ids = this->GetIds(cno); for (j = 0; j < numIds; j++) { ptId = ids[j].PtId; pointData->GetTuple(ptId, pt); if ((dist2 = vtkMath::Distance2BetweenPoints(x, pt)) < minDist2) { closest = ptId; minDist2 = dist2; refinedRadius = sqrt(minDist2); refinedRadius2 = minDist2; } } // for each pt in bucket } // if ids } // if bucket is within the current best distance } // for each overlapping bucket // Don't want to check a smaller radius than we just checked so update // it appropriately if (refinedRadius < currentRadius && ii > 2) // always check ii==1 { ii = static_cast(static_cast(ii) * (refinedRadius / currentRadius)) + 1; if (ii < 2) { ii = 2; } } } // for each radius in the radius schedule if ((closest != -1) && (minDist2 <= radius2)) { dist2 = minDist2; } else { closest = -1; } return closest; } namespace { //------------------------------------------------------------------------------ // Obtaining closest points requires sorting nearby points struct IdTuple { vtkIdType PtId; double Dist2; bool operator<(const IdTuple& tuple) const { return Dist2 < tuple.Dist2; } }; } //------------------------------------------------------------------------------ template void BucketList::FindClosestNPoints(int N, const double x[3], vtkIdList* result) { int i, j; double dist2; double pt[3]; int level; vtkIdType ptId, cno, numIds; int ijk[3], *nei; NeighborBuckets buckets; const LocatorTuple* ids; // Clear out any previous results result->Reset(); // Find the bucket the point is in. // this->GetBucketIndices(x, ijk); // There are two steps, first a simple expanding wave of buckets until // we have enough points. Then a refinement to make sure we have the // N closest points. level = 0; double maxDistance = 0.0; int currentCount = 0; std::vector res(N); this->GetBucketNeighbors(&buckets, ijk, this->Divisions, level); while (buckets.GetNumberOfNeighbors() && currentCount < N) { for (i = 0; i < buckets.GetNumberOfNeighbors(); i++) { nei = buckets.GetPoint(i); cno = nei[0] + nei[1] * this->xD + nei[2] * this->xyD; if ((numIds = this->GetNumberOfIds(cno)) > 0) { ids = this->GetIds(cno); for (j = 0; j < numIds; j++) { ptId = ids[j].PtId; this->DataSet->GetPoint(ptId, pt); dist2 = vtkMath::Distance2BetweenPoints(x, pt); if (currentCount < N) { res[currentCount].Dist2 = dist2; res[currentCount].PtId = ptId; if (dist2 > maxDistance) { maxDistance = dist2; } currentCount++; if (currentCount == N) { std::sort(res.begin(), res.begin() + currentCount); } } else if (dist2 < maxDistance) { res[N - 1].Dist2 = dist2; res[N - 1].PtId = ptId; std::sort(res.begin(), res.begin() + N); maxDistance = res[N - 1].Dist2; } } } } level++; this->GetBucketNeighbors(&buckets, ijk, this->Divisions, level); } // do a sort std::sort(res.begin(), res.begin() + currentCount); // Now do the refinement this->GetOverlappingBuckets(&buckets, x, ijk, sqrt(maxDistance), level - 1); for (i = 0; i < buckets.GetNumberOfNeighbors(); i++) { nei = buckets.GetPoint(i); cno = nei[0] + nei[1] * this->xD + nei[2] * this->xyD; if ((numIds = this->GetNumberOfIds(cno)) > 0) { ids = this->GetIds(cno); for (j = 0; j < numIds; j++) { ptId = ids[j].PtId; this->DataSet->GetPoint(ptId, pt); dist2 = vtkMath::Distance2BetweenPoints(x, pt); if (dist2 < maxDistance) { res[N - 1].Dist2 = dist2; res[N - 1].PtId = ptId; std::sort(res.begin(), res.begin() + N); maxDistance = res[N - 1].Dist2; } } } } // Fill in the IdList result->SetNumberOfIds(currentCount); for (i = 0; i < currentCount; i++) { result->SetId(i, res[i].PtId); } } //------------------------------------------------------------------------------ // The Radius defines a block of buckets which the sphere of radius R may // touch. template void BucketList::FindPointsWithinRadius(double R, const double x[3], vtkIdList* result) { double dist2; double pt[3]; vtkIdType ptId, cno, numIds; double R2 = R * R; const LocatorTuple* ids; double xMin[3], xMax[3]; int i, j, k, ii, jOffset, kOffset, ijkMin[3], ijkMax[3]; // Determine the range of indices in each direction based on radius R xMin[0] = x[0] - R; xMin[1] = x[1] - R; xMin[2] = x[2] - R; xMax[0] = x[0] + R; xMax[1] = x[1] + R; xMax[2] = x[2] + R; // Find the footprint in the locator this->GetBucketIndices(xMin, ijkMin); this->GetBucketIndices(xMax, ijkMax); // Clear out previous results result->Reset(); // Add points within footprint and radius for (k = ijkMin[2]; k <= ijkMax[2]; ++k) { kOffset = k * this->xyD; for (j = ijkMin[1]; j <= ijkMax[1]; ++j) { jOffset = j * this->xD; for (i = ijkMin[0]; i <= ijkMax[0]; ++i) { cno = i + jOffset + kOffset; if ((numIds = this->GetNumberOfIds(cno)) > 0) { ids = this->GetIds(cno); for (ii = 0; ii < numIds; ii++) { ptId = ids[ii].PtId; this->DataSet->GetPoint(ptId, pt); dist2 = vtkMath::Distance2BetweenPoints(x, pt); if (dist2 <= R2) { result->InsertNextId(ptId); } } // for all points in bucket } // if points in bucket } // i-footprint } // j-footprint } // k-footprint } //------------------------------------------------------------------------------ // Find the point within tol of the finite line, and closest to the starting // point of the line (i.e., min parametric coordinate t). // // Note that we have to traverse more than just the buckets (aka bins) // containing the line since the closest point could be in a neighboring // bin. To keep the code simple here's the straightforward approach used in // the code below. Imagine tracing a sphere of radius tol along the finite // line, and processing all bins (and of course the points in the bins) which // intersect the sphere. We use a typical ray tracing approach (see // vtkStaticCellLocator for references) and update the current voxels/bins at // boundaries, including intersecting the sphere with neighboring bins. Since // this simple approach may visit bins multiple times, we keep an array that // marks whether the bin has been visited previously and skip it if we have. template int BucketList::IntersectWithLine(double a0[3], double a1[3], double tol, double& t, double lineX[3], double ptX[3], vtkIdType& ptId) { double* bounds = this->Bounds; int* ndivs = this->Divisions; vtkIdType prod = ndivs[0] * ndivs[1]; double* h = this->H; TIds ii, numPtsInBin; double x[3], xl[3], rayDir[3], xmin[3], xmax[3]; vtkMath::Subtract(a1, a0, rayDir); double curPos[3], curT, tHit, tMin = VTK_FLOAT_MAX; int i, j, k, enterExitCount; int ijk[3], ijkMin[3], ijkMax[3]; vtkIdType idx, pId, bestPtId = (-1); double step[3], next[3], tMax[3], tDelta[3]; double tol2 = tol * tol; // Make sure the bounding box of the locator is hit if (vtkBox::IntersectBox(bounds, a0, rayDir, curPos, curT)) { // Initialize intersection query array if necessary. This is done // locally to ensure thread safety. std::vector bucketHasBeenVisited(this->NumBuckets, 0); // Get the i-j-k point of intersection and bin index. This is // clamped to the boundary of the locator. this->GetBucketIndices(curPos, ijk); // Set up some parameters for traversing through bins step[0] = (rayDir[0] >= 0.0) ? 1.0 : -1.0; step[1] = (rayDir[1] >= 0.0) ? 1.0 : -1.0; step[2] = (rayDir[2] >= 0.0) ? 1.0 : -1.0; // If the ray is going in the negative direction, then the next voxel boundary // is on the "-" direction so we stay in the current voxel. next[0] = bounds[0] + h[0] * (rayDir[0] >= 0.0 ? (ijk[0] + step[0]) : ijk[0]); next[1] = bounds[2] + h[1] * (rayDir[1] >= 0.0 ? (ijk[1] + step[1]) : ijk[1]); next[2] = bounds[4] + h[2] * (rayDir[2] >= 0.0 ? (ijk[2] + step[2]) : ijk[2]); tMax[0] = (rayDir[0] != 0.0) ? (next[0] - curPos[0]) / rayDir[0] : VTK_FLOAT_MAX; tMax[1] = (rayDir[1] != 0.0) ? (next[1] - curPos[1]) / rayDir[1] : VTK_FLOAT_MAX; tMax[2] = (rayDir[2] != 0.0) ? (next[2] - curPos[2]) / rayDir[2] : VTK_FLOAT_MAX; tDelta[0] = (rayDir[0] != 0.0) ? (h[0] / rayDir[0]) * step[0] : VTK_FLOAT_MAX; tDelta[1] = (rayDir[1] != 0.0) ? (h[1] / rayDir[1]) * step[1] : VTK_FLOAT_MAX; tDelta[2] = (rayDir[2] != 0.0) ? (h[2] / rayDir[2]) * step[2] : VTK_FLOAT_MAX; // Process current position including the bins in the sphere // footprint. Note there is a rare pathological case where the footprint // on voxel exit must also be considered. for (bestPtId = (-1), enterExitCount = 0; bestPtId < 0 || enterExitCount < 2;) { // Get the "footprint" of bins containing the sphere defined by the // current position and a radius of tol. xmin[0] = curPos[0] - tol; xmin[1] = curPos[1] - tol; xmin[2] = curPos[2] - tol; xmax[0] = curPos[0] + tol; xmax[1] = curPos[1] + tol; xmax[2] = curPos[2] + tol; this->GetBucketIndices(xmin, ijkMin); this->GetBucketIndices(xmax, ijkMax); // Start walking through the bins, find the best point of // intersection. Note that the ray may not penetrate all of the way // through the locator so may terminate when (t > 1.0). for (k = ijkMin[2]; k <= ijkMax[2]; ++k) { for (j = ijkMin[1]; j <= ijkMax[1]; ++j) { for (i = ijkMin[0]; i <= ijkMax[0]; ++i) { // Current bin index idx = i + j * ndivs[0] + k * prod; if (!bucketHasBeenVisited[idx]) { bucketHasBeenVisited[idx] = 1; if ((numPtsInBin = this->GetNumberOfIds(idx)) > 0) // there are some points here { const LocatorTuple* ptIds = this->GetIds(idx); for (ii = 0; ii < numPtsInBin; ii++) { pId = ptIds[ii].PtId; this->DataSet->GetPoint(pId, x); if (vtkLine::DistanceToLine(x, a0, a1, tHit, xl) <= tol2 && t < tMin) { tMin = t; bestPtId = pId; } // point is within tolerance and closer } // over all points in bin } // if points in bin } // bucket not visited } // i bins } // j bins } // k bins // Make sure to evaluate exit footprint as well. Must evaluate entrance // and exit of current voxel. if (bestPtId >= 0) { enterExitCount++; } // Advance to next voxel / bin if (tMax[0] < tMax[1]) { if (tMax[0] < tMax[2]) { ijk[0] += static_cast(step[0]); tMax[0] += tDelta[0]; curT = tMax[0]; } else { ijk[2] += static_cast(step[2]); tMax[2] += tDelta[2]; curT = tMax[2]; } } else { if (tMax[1] < tMax[2]) { ijk[1] += static_cast(step[1]); tMax[1] += tDelta[1]; curT = tMax[1]; } else { ijk[2] += static_cast(step[2]); tMax[2] += tDelta[2]; curT = tMax[2]; } } // Check exit conditions if (curT > 1.0 || ijk[0] < 0 || ijk[0] >= ndivs[0] || ijk[1] < 0 || ijk[1] >= ndivs[1] || ijk[2] < 0 || ijk[2] >= ndivs[2]) { break; } else { curPos[0] = a0[0] + curT * rayDir[0]; curPos[1] = a0[1] + curT * rayDir[1]; curPos[2] = a0[2] + curT * rayDir[2]; } } // for looking for valid intersected point } // if (vtkBox::IntersectBox(...)) // If a point has been intersected, recover the information and return. // This information could be cached.... if (bestPtId >= 0) { // update the return information ptId = bestPtId; this->DataSet->GetPoint(ptId, ptX); vtkLine::DistanceToLine(ptX, a0, a1, t, lineX); return 1; } return 0; } //------------------------------------------------------------------------------ // Merge points based on tolerance. Return a point map. The map (which is // provided by the user of length numPts where numPts is the number of points // that the locator was built with) simply indicates, for a particular point // id, what point it was merged to. There are two separate paths: when the // tolerance is precisely 0.0, and when tol > 0.0. Both are executed in // parallel, although the second uses a checkerboard approach to avoid write // collisions. The ordering mode applies when the tolerance!=0, and controls // how the points are processed. BIN_ORDERING is threaded and // faster. template void BucketList::MergePoints(double tol, vtkIdType* mergeMap, int orderingMode) { // First mark all points as uninitialized std::fill_n(mergeMap, this->NumPts, (-1)); // If tol=0, then just process points bucket by bucket. Don't have to worry // about points in other buckets. if (tol <= 0.0) { MergePrecise merge(this, mergeMap); vtkSMPTools::For(0, this->NumBuckets, merge); return; } // Merge within a tolerance. Different algorithms are used // depending on how points are merged / ordering mode. BTW, TBB is // much faster than std::thread due to the work stealing / load // balancing features of TBB. if (orderingMode == vtkStaticPointLocator::POINT_ORDER) { MergePointOrder merge(this, tol, mergeMap); merge(this->NumPts); // this is sequential to avoid race conditions } else // orderingMode == vtkStaticPointLocator::BIN_ORDER { MergeBinOrder merge(this, tol, mergeMap); merge.Execute(); // this is checkerboard threaded } } //------------------------------------------------------------------------------ // Merge points with precisely equal position and data values. template void BucketList::MergePointsWithData(vtkDataArray* data, vtkIdType* mergeMap) { // First mark all points as uninitialized std::fill_n(mergeMap, this->NumPts, (-1)); MergePointsAndData merge(this, data, mergeMap); vtkSMPTools::For(0, this->NumBuckets, merge); } //------------------------------------------------------------------------------ // Internal method to find those buckets that are within distance specified // only those buckets outside of level radiuses of ijk are returned template void BucketList::GetOverlappingBuckets( NeighborBuckets* buckets, const double x[3], const int ijk[3], double dist, int level) { int i, j, k, nei[3], minLevel[3], maxLevel[3]; double xMin[3], xMax[3]; // Initialize buckets->Reset(); // Determine the range of indices in each direction xMin[0] = x[0] - dist; xMin[1] = x[1] - dist; xMin[2] = x[2] - dist; xMax[0] = x[0] + dist; xMax[1] = x[1] + dist; xMax[2] = x[2] + dist; this->GetBucketIndices(xMin, minLevel); this->GetBucketIndices(xMax, maxLevel); for (i = minLevel[0]; i <= maxLevel[0]; i++) { for (j = minLevel[1]; j <= maxLevel[1]; j++) { for (k = minLevel[2]; k <= maxLevel[2]; k++) { if (i < (ijk[0] - level) || i > (ijk[0] + level) || j < (ijk[1] - level) || j > (ijk[1] + level) || k < (ijk[2] - level) || k > (ijk[2] + level)) { nei[0] = i; nei[1] = j; nei[2] = k; buckets->InsertNextBucket(nei); } } } } } //------------------------------------------------------------------------------ // Internal method to find those buckets that are within distance specified // only those buckets outside of level radiuses of ijk are returned template void BucketList::GetOverlappingBuckets(NeighborBuckets* buckets, const double x[3], double dist, int prevMinLevel[3], int prevMaxLevel[3]) { int i, j, k, nei[3], minLevel[3], maxLevel[3]; int kFactor, jFactor; int jkSkipFlag, kSkipFlag; double xMin[3], xMax[3]; // Initialize buckets->Reset(); // Determine the range of indices in each direction xMin[0] = x[0] - dist; xMin[1] = x[1] - dist; xMin[2] = x[2] - dist; xMax[0] = x[0] + dist; xMax[1] = x[1] + dist; xMax[2] = x[2] + dist; this->GetBucketIndices(xMin, minLevel); this->GetBucketIndices(xMax, maxLevel); if (minLevel[0] == prevMinLevel[0] && maxLevel[0] == prevMaxLevel[0] && minLevel[1] == prevMinLevel[1] && maxLevel[1] == prevMaxLevel[1] && minLevel[2] == prevMinLevel[2] && maxLevel[2] == prevMaxLevel[2]) { return; } for (k = minLevel[2]; k <= maxLevel[2]; k++) { kFactor = k * this->xyD; if (k >= prevMinLevel[2] && k <= prevMaxLevel[2]) { kSkipFlag = 1; } else { kSkipFlag = 0; } for (j = minLevel[1]; j <= maxLevel[1]; j++) { if (kSkipFlag && j >= prevMinLevel[1] && j <= prevMaxLevel[1]) { jkSkipFlag = 1; } else { jkSkipFlag = 0; } jFactor = j * this->xD; for (i = minLevel[0]; i <= maxLevel[0]; i++) { if (jkSkipFlag && i == prevMinLevel[0]) { i = prevMaxLevel[0]; continue; } // if this bucket has any cells, add it to the list if (this->GetNumberOfIds(i + jFactor + kFactor) > 0) { nei[0] = i; nei[1] = j; nei[2] = k; buckets->InsertNextBucket(nei); } } } } prevMinLevel[0] = minLevel[0]; prevMinLevel[1] = minLevel[1]; prevMinLevel[2] = minLevel[2]; prevMaxLevel[0] = maxLevel[0]; prevMaxLevel[1] = maxLevel[1]; prevMaxLevel[2] = maxLevel[2]; } //------------------------------------------------------------------------------ // Build polygonal representation of locator. Create faces that separate // inside/outside buckets, or separate inside/boundary of locator. template void BucketList::GenerateRepresentation(int vtkNotUsed(level), vtkPolyData* pd) { vtkNew pts; pts->Allocate(5000); vtkNew polys; polys->AllocateEstimate(2048, 3); int ii, i, j, k, idx, offset[3], minusOffset[3], inside, sliceSize; // loop over all buckets, creating appropriate faces sliceSize = this->Divisions[0] * this->Divisions[1]; for (k = 0; k < this->Divisions[2]; k++) { offset[2] = k * sliceSize; minusOffset[2] = (k - 1) * sliceSize; for (j = 0; j < this->Divisions[1]; j++) { offset[1] = j * this->Divisions[0]; minusOffset[1] = (j - 1) * this->Divisions[0]; for (i = 0; i < this->Divisions[0]; i++) { offset[0] = i; minusOffset[0] = i - 1; idx = offset[0] + offset[1] + offset[2]; if (this->GetNumberOfIds(idx) > 0) { inside = 0; } else { inside = 1; } // check "negative" neighbors for (ii = 0; ii < 3; ii++) { if (minusOffset[ii] < 0) { if (inside) { this->GenerateFace(ii, i, j, k, pts, polys); } } else { if (ii == 0) { idx = minusOffset[0] + offset[1] + offset[2]; } else if (ii == 1) { idx = offset[0] + minusOffset[1] + offset[2]; } else { idx = offset[0] + offset[1] + minusOffset[2]; } if ((this->GetNumberOfIds(idx) > 0 && inside) || (this->GetNumberOfIds(idx) > 0 && !inside)) { this->GenerateFace(ii, i, j, k, pts, polys); } } // those buckets on "positive" boundaries can generate faces specially if ((i + 1) >= this->Divisions[0] && inside) { this->GenerateFace(0, i + 1, j, k, pts, polys); } if ((j + 1) >= this->Divisions[1] && inside) { this->GenerateFace(1, i, j + 1, k, pts, polys); } if ((k + 1) >= this->Divisions[2] && inside) { this->GenerateFace(2, i, j, k + 1, pts, polys); } } // over negative faces } // over i divisions } // over j divisions } // over k divisions pd->SetPoints(pts); pd->SetPolys(polys); pd->Squeeze(); } //------------------------------------------------------------------------------ // Here is the VTK class proper. It's implemented with the templated // BucketList class. //------------------------------------------------------------------------------ // Construct with automatic computation of divisions, averaging // 5 points per bucket. vtkStaticPointLocator::vtkStaticPointLocator() { this->NumberOfPointsPerBucket = 1; this->Divisions[0] = this->Divisions[1] = this->Divisions[2] = 50; this->H[0] = this->H[1] = this->H[2] = 0.0; this->Buckets = nullptr; this->MaxNumberOfBuckets = VTK_INT_MAX; this->LargeIds = false; this->TraversalOrder = BIN_ORDER; } //------------------------------------------------------------------------------ vtkStaticPointLocator::~vtkStaticPointLocator() { this->FreeSearchStructure(); } //------------------------------------------------------------------------------ void vtkStaticPointLocator::Initialize() { this->FreeSearchStructure(); } //------------------------------------------------------------------------------ void vtkStaticPointLocator::FreeSearchStructure() { if (this->Buckets) { delete this->Buckets; this->Buckets = nullptr; } } //------------------------------------------------------------------------------ void vtkStaticPointLocator::BuildLocator() { // don't rebuild if build time is newer than modified and dataset modified time if (this->Buckets && this->BuildTime > this->MTime && this->BuildTime > this->DataSet->GetMTime()) { return; } // don't rebuild if UseExistingSearchStructure is ON and a search structure already exists if (this->Buckets && this->UseExistingSearchStructure) { this->BuildTime.Modified(); vtkDebugMacro(<< "BuildLocator exited - UseExistingSearchStructure"); return; } this->BuildLocatorInternal(); } //------------------------------------------------------------------------------ void vtkStaticPointLocator::ForceBuildLocator() { this->BuildLocatorInternal(); } //------------------------------------------------------------------------------ // Method to form subdivision of space based on the points provided and // subject to the constraints of levels and NumberOfPointsPerBucket. // The result is directly addressable and of uniform subdivision. // void vtkStaticPointLocator::BuildLocatorInternal() { int ndivs[3]; int i; vtkIdType numPts; vtkDebugMacro(<< "Hashing points..."); this->Level = 1; // only single lowest level - from superclass if (!this->DataSet || (numPts = this->DataSet->GetNumberOfPoints()) < 1) { vtkErrorMacro(<< "No points to locate"); return; } // Make sure the appropriate data is available this->FreeSearchStructure(); // Size the root bucket. Initialize bucket data structure, compute // level and divisions. The GetBounds() method below can be very slow; // hopefully it is cached or otherwise accelerated. // const double* bounds = this->DataSet->GetBounds(); vtkIdType numBuckets = static_cast( static_cast(numPts) / static_cast(this->NumberOfPointsPerBucket)); numBuckets = (numBuckets > this->MaxNumberOfBuckets ? this->MaxNumberOfBuckets : numBuckets); vtkBoundingBox bbox(bounds); if (this->Automatic) { bbox.ComputeDivisions(numBuckets, this->Bounds, ndivs); } else { bbox.Inflate(); // make sure non-zero volume bbox.GetBounds(this->Bounds); for (i = 0; i < 3; i++) { ndivs[i] = (this->Divisions[i] < 1 ? 1 : this->Divisions[i]); } } this->Divisions[0] = ndivs[0]; this->Divisions[1] = ndivs[1]; this->Divisions[2] = ndivs[2]; this->NumberOfBuckets = numBuckets = static_cast(ndivs[0]) * static_cast(ndivs[1]) * static_cast(ndivs[2]); // Compute width of bucket in three directions for (i = 0; i < 3; i++) { this->H[i] = (this->Bounds[2 * i + 1] - this->Bounds[2 * i]) / static_cast(ndivs[i]); } // Instantiate the locator. The type is related to the maximum point id. // This is done for performance (e.g., the sort is faster) and significant // memory savings. if (numPts >= VTK_INT_MAX || numBuckets >= VTK_INT_MAX) { this->LargeIds = true; this->Buckets = new BucketList(this, numPts, numBuckets); } else { this->LargeIds = false; this->Buckets = new BucketList(this, numPts, numBuckets); } // Actually construct the locator this->Buckets->BuildLocator(); this->BuildTime.Modified(); } //------------------------------------------------------------------------------ // Method to form subdivision of space based on the points provided and // subject to the constraints of levels and NumberOfPointsPerBucket. // The result is directly addressable and of uniform subdivision. void vtkStaticPointLocator::BuildLocator(const double* inBounds) { int ndivs[3]; int i; vtkIdType numPts; // don't rebuild if build time is newer than modified and dataset modified time if (this->Buckets && (this->UseExistingSearchStructure || (this->BuildTime > this->MTime && this->BuildTime > this->DataSet->GetMTime()))) { return; } vtkDebugMacro(<< "Hashing points..."); this->Level = 1; // only single lowest level - from superclass if (!this->DataSet || (numPts = this->DataSet->GetNumberOfPoints()) < 1) { vtkErrorMacro(<< "No points to locate"); return; } // Make sure the appropriate data is available // if (this->Buckets) { this->FreeSearchStructure(); } // Size the root bucket. Initialize bucket data structure, compute // level and divisions. The GetBounds() method below can be very slow; // hopefully it is cached or otherwise accelerated. // const double* bounds = (inBounds == nullptr ? this->DataSet->GetBounds() : inBounds); vtkIdType numBuckets = static_cast( static_cast(numPts) / static_cast(this->NumberOfPointsPerBucket)); numBuckets = (numBuckets > this->MaxNumberOfBuckets ? this->MaxNumberOfBuckets : numBuckets); vtkBoundingBox bbox(bounds); if (this->Automatic) { bbox.ComputeDivisions(numBuckets, this->Bounds, ndivs); } else { bbox.Inflate(); // make sure non-zero volume bbox.GetBounds(this->Bounds); for (i = 0; i < 3; i++) { ndivs[i] = (this->Divisions[i] < 1 ? 1 : this->Divisions[i]); } } this->Divisions[0] = ndivs[0]; this->Divisions[1] = ndivs[1]; this->Divisions[2] = ndivs[2]; this->NumberOfBuckets = numBuckets = static_cast(ndivs[0]) * static_cast(ndivs[1]) * static_cast(ndivs[2]); // Compute width of bucket in three directions // for (i = 0; i < 3; i++) { this->H[i] = (this->Bounds[2 * i + 1] - this->Bounds[2 * i]) / static_cast(ndivs[i]); } // Instantiate the locator. The type is related to the maximum point id. // This is done for performance (e.g., the sort is faster) and significant // memory savings. // if (numPts >= VTK_INT_MAX || numBuckets >= VTK_INT_MAX) { this->LargeIds = true; this->Buckets = new BucketList(this, numPts, numBuckets); } else { this->LargeIds = false; this->Buckets = new BucketList(this, numPts, numBuckets); } // Actually construct the locator this->Buckets->BuildLocator(); this->BuildTime.Modified(); } //------------------------------------------------------------------------------ // These methods satisfy the vtkStaticPointLocator API. The implementation is // with the templated BucketList class. Note that a lot of the complexity here // is due to the desire to use different id types (int versus vtkIdType) for the // purposes of increasing speed and reducing memory. // // You're probably wondering why an if check (on LargeIds) is used to // static_cast on BukcetList type, when virtual inheritance could be // used. Benchmarking shows a small speed difference due to inlining, which // the use of virtual methods short circuits. //------------------------------------------------------------------------------ // Given a position x, return the id of the point closest to it. vtkIdType vtkStaticPointLocator::FindClosestPoint(const double x[3]) { this->BuildLocator(); // will subdivide if modified; otherwise returns if (!this->Buckets) { return -1; } if (this->LargeIds) { return static_cast*>(this->Buckets)->FindClosestPoint(x); } else { return static_cast*>(this->Buckets)->FindClosestPoint(x); } } //------------------------------------------------------------------------------ vtkIdType vtkStaticPointLocator::FindClosestPointWithinRadius( double radius, const double x[3], double inputDataLength, double& dist2) { this->BuildLocator(); // will subdivide if modified; otherwise returns if (!this->Buckets) { return -1; } if (this->LargeIds) { return static_cast*>(this->Buckets) ->FindClosestPointWithinRadius(radius, x, inputDataLength, dist2); } else { return static_cast*>(this->Buckets) ->FindClosestPointWithinRadius(radius, x, inputDataLength, dist2); } } //------------------------------------------------------------------------------ vtkIdType vtkStaticPointLocator::FindClosestPointWithinRadius( double radius, const double x[3], double& dist2) { return this->FindClosestPointWithinRadius(radius, x, this->DataSet->GetLength(), dist2); } //------------------------------------------------------------------------------ void vtkStaticPointLocator::FindClosestNPoints(int N, const double x[3], vtkIdList* result) { this->BuildLocator(); // will subdivide if modified; otherwise returns if (!this->Buckets) { return; } if (this->LargeIds) { return static_cast*>(this->Buckets)->FindClosestNPoints(N, x, result); } else { return static_cast*>(this->Buckets)->FindClosestNPoints(N, x, result); } } //------------------------------------------------------------------------------ void vtkStaticPointLocator::FindPointsWithinRadius(double R, const double x[3], vtkIdList* result) { this->BuildLocator(); // will subdivide if modified; otherwise returns if (!this->Buckets) { return; } if (this->LargeIds) { return static_cast*>(this->Buckets)->FindPointsWithinRadius(R, x, result); } else { return static_cast*>(this->Buckets)->FindPointsWithinRadius(R, x, result); } } //------------------------------------------------------------------------------ // This method traverses the locator along the defined ray, finding the // closest point to a0 when projected onto the line (a0,a1) (i.e., min // parametric coordinate t) and within the tolerance tol (measured in the // world coordinate system). int vtkStaticPointLocator::IntersectWithLine(double a0[3], double a1[3], double tol, double& t, double lineX[3], double ptX[3], vtkIdType& ptId) { this->BuildLocator(); // will subdivide if modified; otherwise returns if (!this->Buckets) { return 0; } if (this->LargeIds) { return static_cast*>(this->Buckets) ->IntersectWithLine(a0, a1, tol, t, lineX, ptX, ptId); } else { return static_cast*>(this->Buckets) ->IntersectWithLine(a0, a1, tol, t, lineX, ptX, ptId); } } //------------------------------------------------------------------------------ // Build a representation for the locator. void vtkStaticPointLocator::GenerateRepresentation(int level, vtkPolyData* pd) { this->BuildLocator(); // will subdivide if modified; otherwise returns if (!this->Buckets) { return; } if (this->LargeIds) { return static_cast*>(this->Buckets)->GenerateRepresentation(level, pd); } else { return static_cast*>(this->Buckets)->GenerateRepresentation(level, pd); } } //------------------------------------------------------------------------------ // Given a bucket, return the number of points inside of it. vtkIdType vtkStaticPointLocator::GetNumberOfPointsInBucket(vtkIdType bNum) { this->BuildLocator(); // will subdivide if modified; otherwise returns if (!this->Buckets) { return 0; } if (this->LargeIds) { return static_cast*>(this->Buckets)->GetNumberOfIds(bNum); } else { return static_cast*>(this->Buckets)->GetNumberOfIds(bNum); } } //------------------------------------------------------------------------------ // Given a bucket, return the ids in the bucket. void vtkStaticPointLocator::GetBucketIds(vtkIdType bNum, vtkIdList* bList) { this->BuildLocator(); // will subdivide if modified; otherwise returns if (!this->Buckets) { bList->Reset(); return; } if (this->LargeIds) { return static_cast*>(this->Buckets)->GetIds(bNum, bList); } else { return static_cast*>(this->Buckets)->GetIds(bNum, bList); } } //------------------------------------------------------------------------------ // Merge the points in the locator, return a merge map. void vtkStaticPointLocator::MergePoints(double tol, vtkIdType* pointMap) { this->BuildLocator(); // will subdivide if modified; otherwise returns if (!this->Buckets) { return; } if (this->LargeIds) { return static_cast*>(this->Buckets) ->MergePoints(tol, pointMap, this->TraversalOrder); } else { return static_cast*>(this->Buckets) ->MergePoints(tol, pointMap, this->TraversalOrder); } } //------------------------------------------------------------------------------ // Merge the points and data in the locator, return a merge map. void vtkStaticPointLocator::MergePointsWithData(vtkDataArray* data, vtkIdType* pointMap) { this->BuildLocator(); // will subdivide if modified; otherwise returns if (!this->Buckets) { return; } if (this->LargeIds) { return static_cast*>(this->Buckets)->MergePointsWithData(data, pointMap); } else { return static_cast*>(this->Buckets)->MergePointsWithData(data, pointMap); } } //------------------------------------------------------------------------------ void vtkStaticPointLocator::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Number of Points Per Bucket: " << this->NumberOfPointsPerBucket << "\n"; os << indent << "Divisions: (" << this->Divisions[0] << ", " << this->Divisions[1] << ", " << this->Divisions[2] << ")\n"; os << indent << "Max Number Of Buckets: " << this->MaxNumberOfBuckets << "\n"; os << indent << "Large IDs: " << this->LargeIds << "\n"; os << indent << "Traversal Order: " << (this->TraversalOrder ? "On\n" : "Off\n"); }