/*========================================================================= Program: Visualization Toolkit Module: vtkVoxel.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkVoxel.h" #include "vtkBox.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkDataArrayRange.h" #include "vtkIncrementalPointLocator.h" #include "vtkLine.h" #include "vtkMarchingCubesTriangleCases.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPixel.h" #include "vtkPointData.h" #include "vtkPoints.h" #include #include vtkStandardNewMacro(vtkVoxel); //------------------------------------------------------------------------------ // Construct the voxel with eight points. vtkVoxel::vtkVoxel() { int i; this->Points->SetNumberOfPoints(8); this->PointIds->SetNumberOfIds(8); for (i = 0; i < 8; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); } for (i = 0; i < 8; i++) { this->PointIds->SetId(i, 0); } this->Line = nullptr; this->Pixel = nullptr; } //------------------------------------------------------------------------------ vtkVoxel::~vtkVoxel() { if (this->Line) { this->Line->Delete(); } if (this->Pixel) { this->Pixel->Delete(); } } //------------------------------------------------------------------------------ bool vtkVoxel::GetCentroid(double centroid[3]) const { return vtkVoxel::ComputeCentroid(this->Points, nullptr, centroid); } //------------------------------------------------------------------------------ bool vtkVoxel::ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]) { double p[3]; if (pointIds) { points->GetPoint(pointIds[0], centroid); points->GetPoint(pointIds[7], p); } else { points->GetPoint(0, centroid); points->GetPoint(7, p); } centroid[0] += p[0]; centroid[1] += p[1]; centroid[2] += p[2]; centroid[0] *= 0.5; centroid[1] *= 0.5; centroid[2] *= 0.5; return true; } //------------------------------------------------------------------------------ bool vtkVoxel::IsInsideOut() { double pt1[3], pt2[3]; this->Points->GetPoint(0, pt1); this->Points->GetPoint(7, pt2); return (pt2[0] - pt1[0]) * (pt2[1] - pt1[1]) * (pt2[2] - pt1[2]) < 0.0; } //------------------------------------------------------------------------------ double vtkVoxel::ComputeBoundingSphere(double center[3]) const { auto points = vtk::DataArrayTupleRange(this->Points->GetData()); auto p0 = points[0], p7 = points[7]; center[0] = 0.5 * (p0[0] + p7[0]); center[1] = 0.5 * (p0[1] + p7[1]); center[2] = 0.5 * (p0[2] + p7[2]); return vtkMath::Distance2BetweenPoints(center, p0); } //------------------------------------------------------------------------------ int vtkVoxel::EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) { double pt1[3], pt2[3], pt3[3], pt4[3]; int i; subId = 0; // // Get coordinate system // this->Points->GetPoint(0, pt1); this->Points->GetPoint(1, pt2); this->Points->GetPoint(2, pt3); this->Points->GetPoint(4, pt4); // // Develop parametric coordinates // pcoords[0] = (x[0] - pt1[0]) / (pt2[0] - pt1[0]); pcoords[1] = (x[1] - pt1[1]) / (pt3[1] - pt1[1]); pcoords[2] = (x[2] - pt1[2]) / (pt4[2] - pt1[2]); if (pcoords[0] >= 0.0 && pcoords[0] <= 1.0 && pcoords[1] >= 0.0 && pcoords[1] <= 1.0 && pcoords[2] >= 0.0 && pcoords[2] <= 1.0) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; } dist2 = 0.0; // inside voxel vtkVoxel::InterpolationFunctions(pcoords, weights); return 1; } else { double pc[3], w[8]; if (closestPoint) { for (i = 0; i < 3; i++) { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, static_cast(w)); dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x); } return 0; } } //------------------------------------------------------------------------------ void vtkVoxel::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { double pt1[3], pt2[3], pt3[3], pt4[3]; int i; this->Points->GetPoint(0, pt1); this->Points->GetPoint(1, pt2); this->Points->GetPoint(2, pt3); this->Points->GetPoint(4, pt4); for (i = 0; i < 3; i++) { x[i] = pt1[i] + pcoords[0] * (pt2[i] - pt1[i]) + pcoords[1] * (pt3[i] - pt1[i]) + pcoords[2] * (pt4[i] - pt1[i]); } vtkVoxel::InterpolationFunctions(pcoords, weights); } //------------------------------------------------------------------------------ int vtkVoxel::Inflate(double dist) { int index = 0; auto range = vtk::DataArrayTupleRange<3>(this->Points->GetData()); using TupleRef = typename decltype(range)::TupleReferenceType; for (TupleRef point : range) { point[0] += dist * (index % 2 ? 1.0 : -1.0); point[1] += dist * ((index / 2) % 2 ? 1.0 : -1.0); point[2] += dist * (index / 4 ? 1.0 : -1.0); ++index; } return 1; } //---------------------------------------------------------------------------- // // Compute Interpolation functions // void vtkVoxel::InterpolationFunctions(const double pcoords[3], double sf[8]) { double rm, sm, tm; double r = pcoords[0], s = pcoords[1], t = pcoords[2]; rm = 1. - r; sm = 1. - s; tm = 1. - t; sf[0] = rm * sm * tm; sf[1] = r * sm * tm; sf[2] = rm * s * tm; sf[3] = r * s * tm; sf[4] = rm * sm * t; sf[5] = r * sm * t; sf[6] = rm * s * t; sf[7] = r * s * t; } //------------------------------------------------------------------------------ void vtkVoxel::InterpolationDerivs(const double pcoords[3], double derivs[24]) { double rm, sm, tm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; tm = 1. - pcoords[2]; // r derivatives derivs[0] = -sm * tm; derivs[1] = sm * tm; derivs[2] = -pcoords[1] * tm; derivs[3] = pcoords[1] * tm; derivs[4] = -sm * pcoords[2]; derivs[5] = sm * pcoords[2]; derivs[6] = -pcoords[1] * pcoords[2]; derivs[7] = pcoords[1] * pcoords[2]; // s derivatives derivs[8] = -rm * tm; derivs[9] = -pcoords[0] * tm; derivs[10] = rm * tm; derivs[11] = pcoords[0] * tm; derivs[12] = -rm * pcoords[2]; derivs[13] = -pcoords[0] * pcoords[2]; derivs[14] = rm * pcoords[2]; derivs[15] = pcoords[0] * pcoords[2]; // t derivatives derivs[16] = -rm * sm; derivs[17] = -pcoords[0] * sm; derivs[18] = -rm * pcoords[1]; derivs[19] = -pcoords[0] * pcoords[1]; derivs[20] = rm * sm; derivs[21] = pcoords[0] * sm; derivs[22] = rm * pcoords[1]; derivs[23] = pcoords[0] * pcoords[1]; } //------------------------------------------------------------------------------ int vtkVoxel::CellBoundary(int vtkNotUsed(subId), const double pcoords[3], vtkIdList* pts) { double t1 = pcoords[0] - pcoords[1]; double t2 = 1.0 - pcoords[0] - pcoords[1]; double t3 = pcoords[1] - pcoords[2]; double t4 = 1.0 - pcoords[1] - pcoords[2]; double t5 = pcoords[2] - pcoords[0]; double t6 = 1.0 - pcoords[2] - pcoords[0]; pts->SetNumberOfIds(4); // compare against six planes in parametric space that divide element // into six pieces. if (t3 >= 0.0 && t4 >= 0.0 && t5 < 0.0 && t6 >= 0.0) { pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(1)); pts->SetId(2, this->PointIds->GetId(3)); pts->SetId(3, this->PointIds->GetId(2)); } else if (t1 >= 0.0 && t2 < 0.0 && t5 < 0.0 && t6 < 0.0) { pts->SetId(0, this->PointIds->GetId(1)); pts->SetId(1, this->PointIds->GetId(3)); pts->SetId(2, this->PointIds->GetId(7)); pts->SetId(3, this->PointIds->GetId(5)); } else if (t1 >= 0.0 && t2 >= 0.0 && t3 < 0.0 && t4 >= 0.0) { pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(1)); pts->SetId(2, this->PointIds->GetId(5)); pts->SetId(3, this->PointIds->GetId(4)); } else if (t3 < 0.0 && t4 < 0.0 && t5 >= 0.0 && t6 < 0.0) { pts->SetId(0, this->PointIds->GetId(4)); pts->SetId(1, this->PointIds->GetId(5)); pts->SetId(2, this->PointIds->GetId(7)); pts->SetId(3, this->PointIds->GetId(6)); } else if (t1 < 0.0 && t2 >= 0.0 && t5 >= 0.0 && t6 >= 0.0) { pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(4)); pts->SetId(2, this->PointIds->GetId(6)); pts->SetId(3, this->PointIds->GetId(2)); } else // if ( t1 < 0.0 && t2 < 0.0 && t3 >= 0.0 && t6 < 0.0 ) { pts->SetId(0, this->PointIds->GetId(3)); pts->SetId(1, this->PointIds->GetId(2)); pts->SetId(2, this->PointIds->GetId(6)); pts->SetId(3, this->PointIds->GetId(7)); } if (pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 || pcoords[2] < 0.0 || pcoords[2] > 1.0) { return 0; } else { return 1; } } namespace { //------------------------------------------------------------------------------ // Voxel topology // // 2_______3 // |\ /| // |6\___/7| // | | | | // | |___| | // |4/ \5| // |/_____\| // 0 1 // constexpr vtkIdType edges[vtkVoxel::NumberOfEdges][2] = { { 0, 1 }, // 0 { 1, 3 }, // 1 { 2, 3 }, // 2 { 0, 2 }, // 3 { 4, 5 }, // 4 { 5, 7 }, // 5 { 6, 7 }, // 6 { 4, 6 }, // 7 { 0, 4 }, // 8 { 1, 5 }, // 9 { 2, 6 }, // 10 { 3, 7 }, // 11 }; // define in terms vtkPixel understands constexpr vtkIdType faces[vtkVoxel::NumberOfFaces][vtkVoxel::MaximumFaceSize + 1] = { { 2, 0, 6, 4, -1 }, // 0 { 1, 3, 5, 7, -1 }, // 1 { 0, 1, 4, 5, -1 }, // 2 { 3, 2, 7, 6, -1 }, // 3 { 1, 0, 3, 2, -1 }, // 4 { 4, 5, 6, 7, -1 }, // 5 }; constexpr vtkIdType edgeToAdjacentFaces[vtkVoxel::NumberOfEdges][2] = { { 2, 4 }, // 0 { 1, 4 }, // 1 { 3, 4 }, // 2 { 0, 4 }, // 3 { 2, 5 }, // 4 { 1, 5 }, // 5 { 3, 5 }, // 6 { 0, 5 }, // 7 { 0, 2 }, // 8 { 1, 2 }, // 9 { 0, 3 }, // 10 { 1, 3 }, // 11 }; constexpr vtkIdType faceToAdjacentFaces[vtkVoxel::NumberOfFaces][vtkVoxel::MaximumFaceSize] = { { 5, 3, 4, 2 }, // 0 { 4, 3, 5, 2 }, // 1 { 4, 1, 5, 0 }, // 2 { 4, 0, 5, 1 }, // 3 { 2, 0, 3, 1 }, // 4 { 2, 1, 3, 0 }, // 5 }; constexpr vtkIdType pointToIncidentEdges[vtkVoxel::NumberOfPoints][vtkVoxel::MaximumValence] = { { 0, 8, 3 }, // 0 { 0, 1, 9 }, // 1 { 2, 3, 10 }, // 2 { 1, 2, 11 }, // 3 { 4, 7, 8 }, // 4 { 4, 9, 5 }, // 5 { 6, 10, 7 }, // 6 { 5, 11, 6 }, // 7 }; constexpr vtkIdType pointToIncidentFaces[vtkVoxel::NumberOfPoints][vtkVoxel::MaximumValence] = { { 2, 0, 4 }, // 0 { 4, 1, 2 }, // 1 { 4, 0, 3 }, // 2 { 4, 3, 1 }, // 3 { 5, 0, 2 }, // 4 { 2, 1, 5 }, // 5 { 3, 0, 5 }, // 6 { 1, 3, 5 }, // 7 }; constexpr vtkIdType pointToOneRingPoints[vtkVoxel::NumberOfPoints][vtkVoxel::MaximumValence] = { { 1, 4, 2 }, // 0 { 0, 3, 5 }, // 1 { 3, 0, 6 }, // 2 { 1, 2, 7 }, // 3 { 5, 6, 0 }, // 4 { 4, 1, 7 }, // 5 { 7, 2, 4 }, // 6 { 5, 3, 6 }, // 7 }; } //---------------------------------------------------------------------------- // // Marching cubes case table // #include "vtkMarchingCubesTriangleCases.h" void vtkVoxel::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { static const int CASE_MASK[8] = { 1, 2, 4, 8, 16, 32, 64, 128 }; vtkMarchingCubesTriangleCases* triCase; EDGE_LIST* edge; int i, j, index; const vtkIdType* vert; static const int vertMap[8] = { 0, 1, 3, 2, 4, 5, 7, 6 }; int newCellId; vtkIdType pts[3]; double t, x1[3], x2[3], x[3]; vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells(); // Build the case table for (i = 0, index = 0; i < 8; i++) { if (cellScalars->GetComponent(vertMap[i], 0) >= value) { index |= CASE_MASK[i]; } } triCase = vtkMarchingCubesTriangleCases::GetCases() + index; edge = triCase->edges; for (; edge[0] > -1; edge += 3) { for (i = 0; i < 3; i++) // insert triangle { vert = edges[edge[i]]; t = (value - cellScalars->GetComponent(vert[0], 0)) / (cellScalars->GetComponent(vert[1], 0) - cellScalars->GetComponent(vert[0], 0)); this->Points->GetPoint(vert[0], x1); this->Points->GetPoint(vert[1], x2); for (j = 0; j < 3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if (locator->InsertUniquePoint(x, pts[i])) { if (outPd) { int p1 = this->PointIds->GetId(vert[0]); int p2 = this->PointIds->GetId(vert[1]); outPd->InterpolateEdge(inPd, pts[i], p1, p2, t); } } } // check for degenerate triangle if (pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2]) { newCellId = offset + polys->InsertNextCell(3, pts); if (outCd) { outCd->CopyData(inCd, cellId, newCellId); } } } } //------------------------------------------------------------------------------ const vtkIdType* vtkVoxel::GetEdgeArray(vtkIdType edgeId) { return edges[edgeId]; } //------------------------------------------------------------------------------ // Return the case table for table-based isocontouring (aka marching cubes // style implementations). A linear 3D cell with N vertices will have 2**N // cases. The cases list three edges in order to produce one output triangle. int* vtkVoxel::GetTriangleCases(int caseId) { return &(*(vtkMarchingCubesTriangleCases::GetCases() + caseId)->edges); } //------------------------------------------------------------------------------ vtkCell* vtkVoxel::GetEdge(int edgeId) { if (!this->Line) { this->Line = vtkLine::New(); } const vtkIdType* verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1, this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1, this->Points->GetPoint(verts[1])); return this->Line; } //------------------------------------------------------------------------------ const vtkIdType* vtkVoxel::GetFaceArray(vtkIdType faceId) { return faces[faceId]; } //------------------------------------------------------------------------------ vtkCell* vtkVoxel::GetFace(int faceId) { if (!this->Pixel) { this->Pixel = vtkPixel::New(); } const vtkIdType* verts; int i; verts = faces[faceId]; for (i = 0; i < 4; i++) { this->Pixel->PointIds->SetId(i, this->PointIds->GetId(verts[i])); this->Pixel->Points->SetPoint(i, this->Points->GetPoint(verts[i])); } return this->Pixel; } //------------------------------------------------------------------------------ // // Intersect voxel with line using "bounding box" intersection. // int vtkVoxel::IntersectWithLine(const double p1[3], const double p2[3], double vtkNotUsed(tol), double& t, double x[3], double pcoords[3], int& subId) { double minPt[3], maxPt[3]; double bounds[6]; double p21[3]; int i; subId = 0; this->Points->GetPoint(0, minPt); this->Points->GetPoint(7, maxPt); for (i = 0; i < 3; i++) { p21[i] = p2[i] - p1[i]; bounds[2 * i] = minPt[i]; bounds[2 * i + 1] = maxPt[i]; } if (!vtkBox::IntersectBox(bounds, p1, p21, x, t)) { return 0; } // // Evaluate intersection // for (i = 0; i < 3; i++) { pcoords[i] = (x[i] - minPt[i]) / (maxPt[i] - minPt[i]); } return 1; } //------------------------------------------------------------------------------ int vtkVoxel::Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) { int p[4], i; ptIds->Reset(); pts->Reset(); // // Create five tetrahedron. Triangulation varies depending upon index. This // is necessary to ensure compatible voxel triangulations. // if ((index % 2)) { p[0] = 0; p[1] = 1; p[2] = 2; p[3] = 4; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 4; p[2] = 5; p[3] = 7; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 4; p[2] = 7; p[3] = 2; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 2; p[2] = 7; p[3] = 3; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 2; p[1] = 7; p[2] = 6; p[3] = 4; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } else { p[0] = 3; p[1] = 1; p[2] = 5; p[3] = 0; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 3; p[2] = 2; p[3] = 6; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 3; p[1] = 5; p[2] = 7; p[3] = 6; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 6; p[2] = 4; p[3] = 5; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 3; p[2] = 6; p[3] = 5; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } return 1; } //------------------------------------------------------------------------------ void vtkVoxel::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double functionDerivs[24], sum; int i, j, k; double x0[3], x1[3], x2[3], x4[3], spacing[3]; this->Points->GetPoint(0, x0); this->Points->GetPoint(1, x1); spacing[0] = x1[0] - x0[0]; this->Points->GetPoint(2, x2); spacing[1] = x2[1] - x0[1]; this->Points->GetPoint(4, x4); spacing[2] = x4[2] - x0[2]; // get derivatives in r-s-t directions this->InterpolationDerivs(pcoords, functionDerivs); // since the x-y-z axes are aligned with r-s-t axes, only need to scale // the derivative values by the data spacing. for (k = 0; k < dim; k++) // loop over values per point { for (j = 0; j < 3; j++) // loop over derivative directions { for (sum = 0.0, i = 0; i < 8; i++) // loop over interp. function derivatives { sum += functionDerivs[8 * j + i] * values[dim * i + k]; } derivs[3 * k + j] = sum / spacing[j]; } } } //------------------------------------------------------------------------------ vtkIdType vtkVoxel::GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) { assert(pointId < vtkVoxel::NumberOfPoints && "pointId too large"); pts = pointToOneRingPoints[pointId]; return vtkVoxel::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkVoxel::GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) { assert(pointId < vtkVoxel::NumberOfPoints && "pointId too large"); faceIds = pointToIncidentFaces[pointId]; return vtkVoxel::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkVoxel::GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) { assert(pointId < vtkVoxel::NumberOfPoints && "pointId too large"); edgeIds = pointToIncidentEdges[pointId]; return vtkVoxel::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkVoxel::GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) { assert(faceId < vtkVoxel::NumberOfFaces && "faceId too large"); faceIds = faceToAdjacentFaces[faceId]; return vtkVoxel::MaximumFaceSize; } //------------------------------------------------------------------------------ void vtkVoxel::GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) { assert(edgeId < vtkVoxel::NumberOfEdges && "edgeId too large"); pts = edgeToAdjacentFaces[edgeId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkVoxel::GetEdgeToAdjacentFacesArray(vtkIdType edgeId) { assert(edgeId < vtkVoxel::NumberOfEdges && "edgeId too large"); return edgeToAdjacentFaces[edgeId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkVoxel::GetFaceToAdjacentFacesArray(vtkIdType faceId) { assert(faceId < vtkVoxel::NumberOfFaces && "faceId too large"); return faceToAdjacentFaces[faceId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkVoxel::GetPointToIncidentEdgesArray(vtkIdType pointId) { assert(pointId < vtkVoxel::NumberOfPoints && "pointId too large"); return pointToIncidentEdges[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkVoxel::GetPointToIncidentFacesArray(vtkIdType pointId) { assert(pointId < vtkVoxel::NumberOfPoints && "pointId too large"); return pointToIncidentFaces[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkVoxel::GetPointToOneRingPointsArray(vtkIdType pointId) { assert(pointId < vtkVoxel::NumberOfPoints && "pointId too large"); return pointToOneRingPoints[pointId]; } //------------------------------------------------------------------------------ void vtkVoxel::GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) { assert(edgeId < vtkVoxel::NumberOfEdges && "edgeId too large"); pts = this->GetEdgeArray(edgeId); } //------------------------------------------------------------------------------ vtkIdType vtkVoxel::GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) { assert(faceId < vtkVoxel::NumberOfFaces && "faceId too large"); pts = this->GetFaceArray(faceId); return vtkVoxel::MaximumFaceSize; } static double vtkVoxelCellPCoords[24] = { 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; //------------------------------------------------------------------------------ double* vtkVoxel::GetParametricCoords() { return vtkVoxelCellPCoords; } //------------------------------------------------------------------------------ void vtkVoxel::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Line:\n"; if (this->Line) { this->Line->PrintSelf(os, indent.GetNextIndent()); } else { os << "None\n"; } os << indent << "Pixel:\n"; if (this->Pixel) { this->Pixel->PrintSelf(os, indent.GetNextIndent()); } else { os << "None\n"; } }