/*========================================================================= Program: Visualization Toolkit Module: vtkWedge.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkWedge.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkDoubleArray.h" #include "vtkIncrementalPointLocator.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkQuad.h" #include "vtkTriangle.h" #include "vtkUnstructuredGrid.h" #include #include vtkStandardNewMacro(vtkWedge); namespace { const double VTK_DIVERGED = 1.e6; //------------------------------------------------------------------------------ // Wedge topology: // // 2 // /|\. // / | \. // / | \. // / /5\ \. // | /___\ | // | /3 4\ | // |/_______\| // 0 1 // vtkIdType edges[vtkWedge::NumberOfEdges][2] = { { 0, 1 }, // 0 { 1, 2 }, // 1 { 2, 0 }, // 2 { 3, 4 }, // 3 { 4, 5 }, // 4 { 5, 3 }, // 5 { 0, 3 }, // 6 { 1, 4 }, // 7 { 2, 5 }, // 8 }; vtkIdType faces[vtkWedge::NumberOfFaces][vtkWedge::MaximumFaceSize + 1] = { { 0, 1, 2, -1, -1 }, // 0 { 3, 5, 4, -1, -1 }, // 1 { 0, 3, 4, 1, -1 }, // 2 { 1, 4, 5, 2, -1 }, // 3 { 2, 5, 3, 0, -1 }, // 4 }; constexpr vtkIdType edgeToAdjacentFaces[vtkWedge::NumberOfEdges][2] = { { 0, 2 }, // 0 { 0, 3 }, // 1 { 0, 3 }, // 2 { 1, 2 }, // 3 { 1, 3 }, // 4 { 1, 4 }, // 5 { 2, 4 }, // 6 { 2, 3 }, // 7 { 3, 4 }, // 8 }; constexpr vtkIdType faceToAdjacentFaces[vtkWedge::NumberOfFaces][vtkWedge::MaximumFaceSize] = { { 4, 3, 2, -1 }, // 0 { 2, 3, 4, -1 }, // 1 { 0, 3, 1, 4 }, // 2 { 0, 4, 1, 2 }, // 3 { 0, 2, 1, 3 }, // 4 }; constexpr vtkIdType pointToIncidentEdges[vtkWedge::NumberOfPoints][vtkWedge::MaximumValence] = { { 0, 6, 2 }, // 0 { 0, 1, 7 }, // 1 { 1, 2, 8 }, // 2 { 3, 5, 6 }, // 3 { 3, 7, 4 }, // 4 { 4, 8, 5 }, // 5 }; constexpr vtkIdType pointToIncidentFaces[vtkWedge::NumberOfPoints][vtkWedge::MaximumValence] = { { 2, 4, 0 }, // 0 { 0, 3, 2 }, // 1 { 0, 4, 3 }, // 2 { 1, 4, 2 }, // 3 { 2, 3, 1 }, // 4 { 3, 4, 1 }, // 5 }; constexpr vtkIdType pointToOneRingPoints[vtkWedge::NumberOfPoints][vtkWedge::MaximumValence] = { { 1, 3, 2 }, // 0 { 0, 2, 4 }, // 1 { 1, 0, 5 }, // 2 { 4, 5, 0 }, // 3 { 3, 1, 5 }, // 4 { 4, 2, 3 }, // 5 }; constexpr vtkIdType numberOfPointsInFace[vtkWedge::NumberOfFaces] = { 3, // 0 3, // 1 4, // 2 4, // 3 4, // 4 }; } //------------------------------------------------------------------------------ bool vtkWedge::GetCentroid(double centroid[3]) const { return vtkWedge::ComputeCentroid(this->Points, nullptr, centroid); } //------------------------------------------------------------------------------ bool vtkWedge::ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]) { double p[3]; centroid[0] = centroid[1] = centroid[2] = 0.0; if (!pointIds) { vtkTriangle::ComputeCentroid(points, faces[0], centroid); vtkTriangle::ComputeCentroid(points, faces[1], p); } else { vtkIdType facePointsIds[3] = { pointIds[faces[0][0]], pointIds[faces[0][1]], pointIds[faces[0][2]] }; vtkTriangle::ComputeCentroid(points, facePointsIds, centroid); facePointsIds[0] = pointIds[faces[1][0]]; facePointsIds[1] = pointIds[faces[1][1]]; facePointsIds[2] = pointIds[faces[1][2]]; vtkTriangle::ComputeCentroid(points, facePointsIds, p); } centroid[0] += p[0]; centroid[1] += p[1]; centroid[2] += p[2]; centroid[0] *= 0.5; centroid[1] *= 0.5; centroid[2] *= 0.5; return true; } //------------------------------------------------------------------------------ bool vtkWedge::IsInsideOut() { double n0[3], n1[3], a[3], b[3], c[3]; this->Points->GetPoint(0, a); this->Points->GetPoint(1, b); this->Points->GetPoint(2, c); b[0] -= a[0]; b[1] -= a[1]; b[2] -= a[2]; a[0] -= c[0]; a[1] -= c[1]; a[2] -= c[2]; vtkMath::Cross(b, a, n0); this->Points->GetPoint(3, a); this->Points->GetPoint(4, b); this->Points->GetPoint(5, c); b[0] -= a[0]; b[1] -= a[1]; b[2] -= a[2]; a[0] -= c[0]; a[1] -= c[1]; a[2] -= c[2]; vtkMath::Cross(b, a, n1); return vtkMath::Dot(n0, n1) > 0.0; } //------------------------------------------------------------------------------ // Construct the wedge with six points. vtkWedge::vtkWedge() { this->Points->SetNumberOfPoints(6); this->PointIds->SetNumberOfIds(6); for (int i = 0; i < 6; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i, 0); } this->Line = vtkLine::New(); this->Triangle = vtkTriangle::New(); this->Quad = vtkQuad::New(); } //------------------------------------------------------------------------------ vtkWedge::~vtkWedge() { this->Line->Delete(); this->Triangle->Delete(); this->Quad->Delete(); } static const int VTK_WEDGE_MAX_ITERATION = 10; static const double VTK_WEDGE_CONVERGED = 1.e-03; //------------------------------------------------------------------------------ int vtkWedge::EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) { double params[3] = { 0.5, 0.5, 0.5 }; double derivs[18]; // Efficient point access vtkDoubleArray* pointArray = static_cast(this->Points->GetData()); const double* pts = pointArray->GetPointer(0); const double *pt0, *pt1; // compute a bound on the volume to get a scale for an acceptable determinant double longestEdge = 0; for (int i = 0; i < 9; i++) { pt0 = pts + 3 * edges[i][0]; pt1 = pts + 3 * edges[i][1]; double d2 = vtkMath::Distance2BetweenPoints(pt0, pt1); if (longestEdge < d2) { longestEdge = d2; } } // longestEdge value is already squared double volumeBound = pow(longestEdge, 1.5); double determinantTolerance = 1e-20 < .00001 * volumeBound ? 1e-20 : .00001 * volumeBound; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = 0.5; // enter iteration loop int converged = 0; for (int iteration = 0; !converged && (iteration < VTK_WEDGE_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives vtkWedge::InterpolationFunctions(pcoords, weights); vtkWedge::InterpolationDerivs(pcoords, derivs); // calculate newton functions double fcol[3] = { 0, 0, 0 }, rcol[3] = { 0, 0, 0 }, scol[3] = { 0, 0, 0 }, tcol[3] = { 0, 0, 0 }; for (int i = 0; i < 6; i++) { for (int j = 0; j < 3; j++) { const double coord = pts[3 * i + j]; fcol[j] += coord * weights[i]; rcol[j] += coord * derivs[i]; scol[j] += coord * derivs[i + 6]; tcol[j] += coord * derivs[i + 12]; } } for (int i = 0; i < 3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements double d = vtkMath::Determinant3x3(rcol, scol, tcol); if (fabs(d) < determinantTolerance) { vtkDebugMacro(<< "Determinant incorrect, iteration " << iteration); return -1; } pcoords[0] = params[0] - vtkMath::Determinant3x3(fcol, scol, tcol) / d; pcoords[1] = params[1] - vtkMath::Determinant3x3(rcol, fcol, tcol) / d; pcoords[2] = params[2] - vtkMath::Determinant3x3(rcol, scol, fcol) / d; // check for convergence if (((fabs(pcoords[0] - params[0])) < VTK_WEDGE_CONVERGED) && ((fabs(pcoords[1] - params[1])) < VTK_WEDGE_CONVERGED) && ((fabs(pcoords[2] - params[2])) < VTK_WEDGE_CONVERGED)) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if (!converged) { return -1; } vtkWedge::InterpolationFunctions(pcoords, weights); if (pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 && pcoords[0] + pcoords[1] <= 1.001) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; // inside wedge } return 1; } else { double pc[3], w[6]; if (closestPoint) { for (int i = 0; i < 3; i++) // only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, static_cast(w)); dist2 = vtkMath::Distance2BetweenPoints(closestPoint, x); } return 0; } } //------------------------------------------------------------------------------ void vtkWedge::EvaluateLocation( int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights) { int i, j; double pt[3]; vtkWedge::InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i = 0; i < 6; i++) { this->Points->GetPoint(i, pt); for (j = 0; j < 3; j++) { x[j] += pt[j] * weights[i]; } } } //------------------------------------------------------------------------------ // Returns the closest face to the point specified. Closeness is measured // parametrically. int vtkWedge::CellBoundary(int vtkNotUsed(subId), const double pcoords[3], vtkIdList* pts) { int i; // define 9 planes that separate regions static double normals[9][3] = { { 0.0, 0.83205, -0.5547 }, { -0.639602, -0.639602, -0.426401 }, { 0.83205, 0.0, -0.5547 }, { 0.0, 0.83205, 0.5547 }, { -0.639602, -0.639602, 0.426401 }, { 0.83205, 0.0, 0.5547 }, { -0.707107, 0.707107, 0.0 }, { 0.447214, 0.894427, 0.0 }, { 0.894427, 0.447214, 0.0 } }; static double point[3] = { 0.333333, 0.333333, 0.5 }; double vals[9]; // evaluate 9 plane equations for (i = 0; i < 9; i++) { vals[i] = normals[i][0] * (pcoords[0] - point[0]) + normals[i][1] * (pcoords[1] - point[1]) + normals[i][2] * (pcoords[2] - point[2]); } // compare against nine planes in parametric space that divide element // into five pieces (each corresponding to a face). if (vals[0] >= 0.0 && vals[1] >= 0.0 && vals[2] >= 0.0) { pts->SetNumberOfIds(3); // triangle face pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(1)); pts->SetId(2, this->PointIds->GetId(2)); } else if (vals[3] >= 0.0 && vals[4] >= 0.0 && vals[5] >= 0.0) { pts->SetNumberOfIds(3); // triangle face pts->SetId(0, this->PointIds->GetId(3)); pts->SetId(1, this->PointIds->GetId(4)); pts->SetId(2, this->PointIds->GetId(5)); } else if (vals[0] <= 0.0 && vals[3] <= 0.0 && vals[6] <= 0.0 && vals[7] <= 0.0) { pts->SetNumberOfIds(4); // quad face pts->SetId(0, this->PointIds->GetId(0)); pts->SetId(1, this->PointIds->GetId(1)); pts->SetId(2, this->PointIds->GetId(4)); pts->SetId(3, this->PointIds->GetId(3)); } else if (vals[1] <= 0.0 && vals[4] <= 0.0 && vals[7] >= 0.0 && vals[8] >= 0.0) { pts->SetNumberOfIds(4); // quad face pts->SetId(0, this->PointIds->GetId(1)); pts->SetId(1, this->PointIds->GetId(2)); pts->SetId(2, this->PointIds->GetId(5)); pts->SetId(3, this->PointIds->GetId(4)); } else // vals[2] <= 0.0 && vals[5] <= 0.0 && vals[8] <= 0.0 && vals[6] >= 0.0 { pts->SetNumberOfIds(4); // quad face pts->SetId(0, this->PointIds->GetId(2)); pts->SetId(1, this->PointIds->GetId(0)); pts->SetId(2, this->PointIds->GetId(3)); pts->SetId(3, this->PointIds->GetId(5)); } if (pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 || pcoords[2] < 0.0 || pcoords[2] > 1.0) { return 0; } else { return 1; } } namespace { // required so we don't violate ODR typedef int EDGE_LIST; struct TRIANGLE_CASES_t { EDGE_LIST edges[13]; }; using TRIANGLE_CASES = struct TRIANGLE_CASES_t; TRIANGLE_CASES triCases[] = { { { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 0 { { 0, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 1 { { 0, 1, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 2 { { 6, 1, 7, 6, 2, 1, -1, -1, -1, -1, -1, -1, -1 } }, // 3 { { 1, 2, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 4 { { 6, 1, 0, 6, 8, 1, -1, -1, -1, -1, -1, -1, -1 } }, // 5 { { 0, 2, 8, 7, 0, 8, -1, -1, -1, -1, -1, -1, -1 } }, // 6 { { 7, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 7 { { 3, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 8 { { 3, 5, 0, 5, 2, 0, -1, -1, -1, -1, -1, -1, -1 } }, // 9 { { 0, 1, 7, 6, 3, 5, -1, -1, -1, -1, -1, -1, -1 } }, // 10 { { 1, 7, 3, 1, 3, 5, 1, 5, 2, -1, -1, -1, -1 } }, // 11 { { 2, 8, 1, 6, 3, 5, -1, -1, -1, -1, -1, -1, -1 } }, // 12 { { 0, 3, 1, 1, 3, 5, 1, 5, 8, -1, -1, -1, -1 } }, // 13 { { 6, 3, 5, 0, 8, 7, 0, 2, 8, -1, -1, -1, -1 } }, // 14 { { 7, 3, 5, 7, 5, 8, -1, -1, -1, -1, -1, -1, -1 } }, // 15 { { 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 16 { { 7, 4, 3, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1 } }, // 17 { { 0, 1, 3, 1, 4, 3, -1, -1, -1, -1, -1, -1, -1 } }, // 18 { { 1, 4, 3, 1, 3, 6, 1, 6, 2, -1, -1, -1, -1 } }, // 19 { { 7, 4, 3, 2, 8, 1, -1, -1, -1, -1, -1, -1, -1 } }, // 20 { { 7, 4, 3, 6, 1, 0, 6, 8, 1, -1, -1, -1, -1 } }, // 21 { { 0, 4, 3, 0, 8, 4, 0, 2, 8, -1, -1, -1, -1 } }, // 22 { { 6, 8, 3, 3, 8, 4, -1, -1, -1, -1, -1, -1, -1 } }, // 23 { { 6, 7, 4, 6, 4, 5, -1, -1, -1, -1, -1, -1, -1 } }, // 24 { { 0, 7, 5, 7, 4, 5, 2, 0, 5, -1, -1, -1, -1 } }, // 25 { { 1, 6, 0, 1, 5, 6, 1, 4, 5, -1, -1, -1, -1 } }, // 26 { { 2, 1, 5, 5, 1, 4, -1, -1, -1, -1, -1, -1, -1 } }, // 27 { { 2, 8, 1, 6, 7, 5, 7, 4, 5, -1, -1, -1, -1 } }, // 28 { { 0, 7, 5, 7, 4, 5, 0, 5, 1, 1, 5, 8, -1 } }, // 29 { { 0, 2, 8, 0, 8, 4, 0, 4, 5, 0, 5, 6, -1 } }, // 30 { { 8, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 31 { { 4, 8, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 32 { { 4, 8, 5, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1 } }, // 33 { { 4, 8, 5, 0, 1, 7, -1, -1, -1, -1, -1, -1, -1 } }, // 34 { { 4, 8, 5, 6, 1, 7, 6, 2, 1, -1, -1, -1, -1 } }, // 35 { { 1, 5, 4, 2, 5, 1, -1, -1, -1, -1, -1, -1, -1 } }, // 36 { { 1, 5, 4, 1, 6, 5, 1, 0, 6, -1, -1, -1, -1 } }, // 37 { { 5, 4, 7, 5, 7, 0, 5, 0, 2, -1, -1, -1, -1 } }, // 38 { { 6, 4, 7, 6, 5, 4, -1, -1, -1, -1, -1, -1, -1 } }, // 39 { { 6, 3, 8, 3, 4, 8, -1, -1, -1, -1, -1, -1, -1 } }, // 40 { { 0, 3, 4, 0, 4, 8, 0, 8, 2, -1, -1, -1, -1 } }, // 41 { { 7, 0, 1, 6, 3, 4, 6, 4, 8, -1, -1, -1, -1 } }, // 42 { { 1, 7, 3, 1, 3, 2, 2, 3, 8, 8, 3, 4, -1 } }, // 43 { { 2, 6, 1, 6, 3, 1, 3, 4, 1, -1, -1, -1, -1 } }, // 44 { { 0, 3, 1, 1, 3, 4, -1, -1, -1, -1, -1, -1, -1 } }, // 45 { { 7, 0, 4, 4, 0, 2, 4, 2, 3, 3, 2, 6, -1 } }, // 46 { { 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 47 { { 7, 8, 5, 7, 5, 3, -1, -1, -1, -1, -1, -1, -1 } }, // 48 { { 0, 6, 2, 7, 8, 5, 7, 5, 3, -1, -1, -1, -1 } }, // 49 { { 0, 1, 3, 1, 5, 3, 1, 8, 5, -1, -1, -1, -1 } }, // 50 { { 2, 1, 6, 6, 1, 3, 5, 1, 8, 3, 1, 5, -1 } }, // 51 { { 1, 3, 7, 1, 5, 3, 1, 2, 5, -1, -1, -1, -1 } }, // 52 { { 1, 0, 6, 1, 6, 5, 1, 5, 7, 7, 5, 3, -1 } }, // 53 { { 0, 2, 5, 0, 5, 3, -1, -1, -1, -1, -1, -1, -1 } }, // 54 { { 3, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 55 { { 7, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 56 { { 0, 7, 8, 0, 8, 2, -1, -1, -1, -1, -1, -1, -1 } }, // 57 { { 0, 1, 6, 1, 8, 6, -1, -1, -1, -1, -1, -1, -1 } }, // 58 { { 2, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 59 { { 6, 7, 1, 6, 1, 2, -1, -1, -1, -1, -1, -1, -1 } }, // 60 { { 0, 7, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 61 { { 0, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, // 62 { { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } } // 63 }; } //------------------------------------------------------------------------------ void vtkWedge::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { static const int CASE_MASK[6] = { 1, 2, 4, 8, 16, 32 }; TRIANGLE_CASES* triCase; EDGE_LIST* edge; int i, j, index, v1, v2, newCellId; const vtkIdType* vert; vtkIdType pts[3]; double t, x1[3], x2[3], x[3], deltaScalar; vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells(); // Build the case table for (i = 0, index = 0; i < 6; i++) { if (cellScalars->GetComponent(i, 0) >= value) { index |= CASE_MASK[i]; } } triCase = triCases + index; edge = triCase->edges; for (; edge[0] > -1; edge += 3) { for (i = 0; i < 3; i++) // insert triangle { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1], 0) - cellScalars->GetComponent(vert[0], 0)); if (deltaScalar > 0) { v1 = vert[0]; v2 = vert[1]; } else { v1 = vert[1]; v2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation t = (deltaScalar == 0.0 ? 0.0 : (value - cellScalars->GetComponent(v1, 0)) / deltaScalar); this->Points->GetPoint(v1, x1); this->Points->GetPoint(v2, x2); for (j = 0; j < 3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if (locator->InsertUniquePoint(x, pts[i])) { if (outPd) { vtkIdType p1 = this->PointIds->GetId(v1); vtkIdType p2 = this->PointIds->GetId(v2); outPd->InterpolateEdge(inPd, pts[i], p1, p2, t); } } } // check for degenerate triangle if (pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2]) { newCellId = offset + polys->InsertNextCell(3, pts); if (outCd) { outCd->CopyData(inCd, cellId, newCellId); } } } } //------------------------------------------------------------------------------ const vtkIdType* vtkWedge::GetEdgeToAdjacentFacesArray(vtkIdType edgeId) { assert(edgeId < vtkWedge::NumberOfEdges && "edgeId too large"); return edgeToAdjacentFaces[edgeId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkWedge::GetFaceToAdjacentFacesArray(vtkIdType faceId) { assert(faceId < vtkWedge::NumberOfFaces && "faceId too large"); return faceToAdjacentFaces[faceId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkWedge::GetPointToIncidentEdgesArray(vtkIdType pointId) { assert(pointId < vtkWedge::NumberOfPoints && "pointId too large"); return pointToIncidentEdges[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkWedge::GetPointToIncidentFacesArray(vtkIdType pointId) { assert(pointId < vtkWedge::NumberOfPoints && "pointId too large"); return pointToIncidentFaces[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkWedge::GetPointToOneRingPointsArray(vtkIdType pointId) { assert(pointId < vtkWedge::NumberOfPoints && "pointId too large"); return pointToOneRingPoints[pointId]; } //------------------------------------------------------------------------------ const vtkIdType* vtkWedge::GetEdgeArray(vtkIdType edgeId) { assert(edgeId < vtkWedge::NumberOfEdges && "edgeId too large"); return edges[edgeId]; } //------------------------------------------------------------------------------ // Return the case table for table-based isocontouring (aka marching cubes // style implementations). A linear 3D cell with N vertices will have 2**N // cases. The cases list three edges in order to produce one output triangle. int* vtkWedge::GetTriangleCases(int caseId) { return triCases[caseId].edges; } //------------------------------------------------------------------------------ vtkCell* vtkWedge::GetEdge(int edgeId) { const vtkIdType* verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1, this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1, this->Points->GetPoint(verts[1])); return this->Line; } //------------------------------------------------------------------------------ const vtkIdType* vtkWedge::GetFaceArray(vtkIdType faceId) { assert(faceId < vtkWedge::NumberOfFaces && "faceId too large"); return faces[faceId]; } //------------------------------------------------------------------------------ vtkCell* vtkWedge::GetFace(int faceId) { const vtkIdType* verts = faces[faceId]; if (verts[3] != -1) // quad cell { // load point id's this->Quad->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Quad->PointIds->SetId(1, this->PointIds->GetId(verts[1])); this->Quad->PointIds->SetId(2, this->PointIds->GetId(verts[2])); this->Quad->PointIds->SetId(3, this->PointIds->GetId(verts[3])); // load coordinates this->Quad->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Quad->Points->SetPoint(1, this->Points->GetPoint(verts[1])); this->Quad->Points->SetPoint(2, this->Points->GetPoint(verts[2])); this->Quad->Points->SetPoint(3, this->Points->GetPoint(verts[3])); return this->Quad; } else { // load point id's this->Triangle->PointIds->SetId(0, this->PointIds->GetId(verts[0])); this->Triangle->PointIds->SetId(1, this->PointIds->GetId(verts[1])); this->Triangle->PointIds->SetId(2, this->PointIds->GetId(verts[2])); // load coordinates this->Triangle->Points->SetPoint(0, this->Points->GetPoint(verts[0])); this->Triangle->Points->SetPoint(1, this->Points->GetPoint(verts[1])); this->Triangle->Points->SetPoint(2, this->Points->GetPoint(verts[2])); return this->Triangle; } } //------------------------------------------------------------------------------ // Intersect faces against line. // int vtkWedge::IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { int intersection = 0; double pt1[3], pt2[3], pt3[3], pt4[3]; double tTemp; double pc[3], xTemp[3]; int faceNum; t = VTK_DOUBLE_MAX; // first intersect the triangle faces for (faceNum = 0; faceNum < 2; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Triangle->Points->SetPoint(0, pt1); this->Triangle->Points->SetPoint(1, pt2); this->Triangle->Points->SetPoint(2, pt3); if (this->Triangle->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId)) { intersection = 1; if (tTemp < t) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 1: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0; break; } } } } // now intersect the quad faces for (faceNum = 2; faceNum < 5; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Points->GetPoint(faces[faceNum][3], pt4); this->Quad->Points->SetPoint(0, pt1); this->Quad->Points->SetPoint(1, pt2); this->Quad->Points->SetPoint(2, pt3); this->Quad->Points->SetPoint(3, pt4); if (this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId)) { intersection = 1; if (tTemp < t) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 2: pcoords[0] = pc[1]; pcoords[1] = 0.0; pcoords[2] = pc[0]; break; case 3: pcoords[0] = 1.0 - pc[1]; pcoords[1] = pc[1]; pcoords[2] = pc[0]; break; case 4: pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = pc[0]; break; } } } } return intersection; } //------------------------------------------------------------------------------ int vtkWedge::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts) { ptIds->Reset(); pts->Reset(); // one wedge (or prism) is decomposed into 3 tetrahedrons and four // pairs of (pointId, pointCoordinates) are provided for each tetrahedron int i, p[4]; // Tetra #0 info (original point Ids): { 0, 2, 1, 3 } p[0] = 0; p[1] = 2; p[2] = 1; p[3] = 3; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } // Tetra #1 info (original point Ids): { 1, 3, 5, 4 } p[0] = 1; p[1] = 3; p[2] = 5; p[3] = 4; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } // Tetra #2 info (original point Ids): { 1, 2, 5, 3 } p[0] = 1; p[1] = 2; p[2] = 5; p[3] = 3; for (i = 0; i < 4; i++) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } return 1; } //------------------------------------------------------------------------------ void vtkWedge::Derivatives( int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[18], sum[3], value; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k = 0; k < dim; k++) // loop over values per point { sum[0] = sum[1] = sum[2] = 0.0; for (i = 0; i < 6; i++) // loop over interp. function derivatives { value = values[dim * i + k]; sum[0] += functionDerivs[i] * value; sum[1] += functionDerivs[6 + i] * value; sum[2] += functionDerivs[12 + i] * value; } for (j = 0; j < 3; j++) // loop over derivative directions { derivs[3 * k + j] = sum[0] * jI[j][0] + sum[1] * jI[j][1] + sum[2] * jI[j][2]; } } } //------------------------------------------------------------------------------ // Compute iso-parametric interpolation functions // void vtkWedge::InterpolationFunctions(const double pcoords[3], double sf[6]) { sf[0] = (1.0 - pcoords[0] - pcoords[1]) * (1.0 - pcoords[2]); sf[1] = pcoords[0] * (1.0 - pcoords[2]); sf[2] = pcoords[1] * (1.0 - pcoords[2]); sf[3] = (1.0 - pcoords[0] - pcoords[1]) * pcoords[2]; sf[4] = pcoords[0] * pcoords[2]; sf[5] = pcoords[1] * pcoords[2]; } //------------------------------------------------------------------------------ void vtkWedge::InterpolationDerivs(const double pcoords[3], double derivs[18]) { // r-derivatives derivs[0] = -1.0 + pcoords[2]; derivs[1] = 1.0 - pcoords[2]; derivs[2] = 0.0; derivs[3] = -pcoords[2]; derivs[4] = pcoords[2]; derivs[5] = 0.0; // s-derivatives derivs[6] = -1.0 + pcoords[2]; derivs[7] = 0.0; derivs[8] = 1.0 - pcoords[2]; derivs[9] = -pcoords[2]; derivs[10] = 0.0; derivs[11] = pcoords[2]; // t-derivatives derivs[12] = -1.0 + pcoords[0] + pcoords[1]; derivs[13] = -pcoords[0]; derivs[14] = -pcoords[1]; derivs[15] = 1.0 - pcoords[0] - pcoords[1]; derivs[16] = pcoords[0]; derivs[17] = pcoords[1]; } //------------------------------------------------------------------------------ // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. Returns 0 if no inverse exists. int vtkWedge::JacobianInverse(const double pcoords[3], double** inverse, double derivs[18]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i = 0; i < 3; i++) // initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for (j = 0; j < 6; j++) { this->Points->GetPoint(j, x); for (i = 0; i < 3; i++) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[6 + j]; m2[i] += x[i] * derivs[12 + j]; } } // now find the inverse if (vtkMath::InvertMatrix(m, inverse, 3) == 0) { vtkErrorMacro(<< "Jacobian inverse not found" << "Matrix:" << m[0][0] << " " << m[0][1] << " " << m[0][2] << m[1][0] << " " << m[1][1] << " " << m[1][2] << m[2][0] << " " << m[2][1] << " " << m[2][2]); return 0; } return 1; } //------------------------------------------------------------------------------ vtkIdType vtkWedge::GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) { assert(pointId < vtkWedge::NumberOfPoints && "pointId too large"); pts = pointToOneRingPoints[pointId]; return vtkWedge::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkWedge::GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) { assert(pointId < vtkWedge::NumberOfPoints && "pointId too large"); faceIds = pointToIncidentFaces[pointId]; return vtkWedge::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkWedge::GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) { assert(pointId < vtkWedge::NumberOfPoints && "pointId too large"); edgeIds = pointToIncidentEdges[pointId]; return vtkWedge::MaximumValence; } //------------------------------------------------------------------------------ vtkIdType vtkWedge::GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) { assert(faceId < vtkWedge::NumberOfFaces && "faceId too large"); faceIds = faceToAdjacentFaces[faceId]; return numberOfPointsInFace[faceId]; } //------------------------------------------------------------------------------ void vtkWedge::GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) { assert(edgeId < vtkWedge::NumberOfEdges && "edgeId too large"); pts = edgeToAdjacentFaces[edgeId]; } //------------------------------------------------------------------------------ void vtkWedge::GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) { assert(edgeId < vtkWedge::NumberOfEdges && "edgeId too large"); pts = this->GetEdgeArray(edgeId); } //------------------------------------------------------------------------------ vtkIdType vtkWedge::GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) { assert(faceId < vtkWedge::NumberOfFaces && "faceId too large"); pts = this->GetFaceArray(faceId); return numberOfPointsInFace[faceId]; } static double vtkWedgeCellPCoords[18] = { 0.0, 0.0, 0.0, // 1.0, 0.0, 0.0, // 0.0, 1.0, 0.0, // 0.0, 0.0, 1.0, // 1.0, 0.0, 1.0, // 0.0, 1.0, 1.0 // }; //------------------------------------------------------------------------------ double* vtkWedge::GetParametricCoords() { return vtkWedgeCellPCoords; } //------------------------------------------------------------------------------ void vtkWedge::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Line:\n"; this->Line->PrintSelf(os, indent.GetNextIndent()); os << indent << "Triangle:\n"; this->Triangle->PrintSelf(os, indent.GetNextIndent()); os << indent << "Quad:\n"; this->Quad->PrintSelf(os, indent.GetNextIndent()); }