/*========================================================================= Program: Visualization Toolkit Module: vtkImageLaplacian.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkImageLaplacian.h" #include "vtkImageData.h" #include "vtkInformation.h" #include "vtkInformationVector.h" #include "vtkObjectFactory.h" #include "vtkStreamingDemandDrivenPipeline.h" #include vtkStandardNewMacro(vtkImageLaplacian); //------------------------------------------------------------------------------ // Construct an instance of vtkImageLaplacian filter. vtkImageLaplacian::vtkImageLaplacian() { this->Dimensionality = 2; } //------------------------------------------------------------------------------ void vtkImageLaplacian::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "Dimensionality: " << this->Dimensionality; } //------------------------------------------------------------------------------ // Just clip the request. The subclass may need to overwrite this method. int vtkImageLaplacian::RequestUpdateExtent(vtkInformation* vtkNotUsed(request), vtkInformationVector** inputVector, vtkInformationVector* outputVector) { // get the info objects vtkInformation* outInfo = outputVector->GetInformationObject(0); vtkInformation* inInfo = inputVector[0]->GetInformationObject(0); int idx; int wholeExtent[6], inUExt[6]; inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent); outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt); // update and Clip for (idx = 0; idx < 3; ++idx) { --inUExt[idx * 2]; ++inUExt[idx * 2 + 1]; if (inUExt[idx * 2] < wholeExtent[idx * 2]) { inUExt[idx * 2] = wholeExtent[idx * 2]; } if (inUExt[idx * 2] > wholeExtent[idx * 2 + 1]) { inUExt[idx * 2] = wholeExtent[idx * 2 + 1]; } if (inUExt[idx * 2 + 1] < wholeExtent[idx * 2]) { inUExt[idx * 2 + 1] = wholeExtent[idx * 2]; } if (inUExt[idx * 2 + 1] > wholeExtent[idx * 2 + 1]) { inUExt[idx * 2 + 1] = wholeExtent[idx * 2 + 1]; } } inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt, 6); return 1; } //------------------------------------------------------------------------------ // This execute method handles boundaries. // it handles boundaries. Pixels are just replicated to get values // out of extent. template void vtkImageLaplacianExecute(vtkImageLaplacian* self, vtkImageData* inData, T* inPtr, vtkImageData* outData, T* outPtr, int outExt[6], int id) { int idxC, idxX, idxY, idxZ; int maxC, maxX, maxY, maxZ; vtkIdType inIncX, inIncY, inIncZ; vtkIdType outIncX, outIncY, outIncZ; unsigned long count = 0; unsigned long target; int axesNum; int* wholeExtent; vtkIdType inIncs[3]; double r[3], d, sum; int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax; // find the region to loop over maxC = inData->GetNumberOfScalarComponents(); maxX = outExt[1] - outExt[0]; maxY = outExt[3] - outExt[2]; maxZ = outExt[5] - outExt[4]; target = static_cast((maxZ + 1) * (maxY + 1) / 50.0); target++; // Get the dimensionality of the gradient. axesNum = self->GetDimensionality(); // Get increments to march through data inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ); outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ); // The data spacing is important for computing the Laplacian. // Divided by dx twice (second derivative). inData->GetSpacing(r); r[0] = 1.0 / (r[0] * r[0]); r[1] = 1.0 / (r[1] * r[1]); r[2] = 1.0 / (r[2] * r[2]); // get some other info we need inData->GetIncrements(inIncs); wholeExtent = inData->GetExtent(); // Loop through output pixels for (idxZ = 0; idxZ <= maxZ; idxZ++) { useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2]; useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2]; for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++) { if (!id) { if (!(count % target)) { self->UpdateProgress(count / (50.0 * target)); } count++; } useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1]; useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1]; for (idxX = 0; idxX <= maxX; idxX++) { useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0]; useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0]; for (idxC = 0; idxC < maxC; idxC++) { // do X axis d = -2.0 * (*inPtr); d += static_cast(inPtr[useXMin]); d += static_cast(inPtr[useXMax]); sum = d * r[0]; // do y axis d = -2.0 * (*inPtr); d += static_cast(inPtr[useYMin]); d += static_cast(inPtr[useYMax]); sum = sum + d * r[1]; if (axesNum == 3) { // do z axis d = -2.0 * (*inPtr); d += static_cast(inPtr[useZMin]); d += static_cast(inPtr[useZMax]); sum = sum + d * r[2]; } *outPtr = static_cast(sum); inPtr++; outPtr++; } } outPtr += outIncY; inPtr += inIncY; } outPtr += outIncZ; inPtr += inIncZ; } } //------------------------------------------------------------------------------ // This method contains a switch statement that calls the correct // templated function for the input data type. The output data // must match input type. This method does handle boundary conditions. void vtkImageLaplacian::ThreadedRequestData(vtkInformation* vtkNotUsed(request), vtkInformationVector** vtkNotUsed(inputVector), vtkInformationVector* vtkNotUsed(outputVector), vtkImageData*** inData, vtkImageData** outData, int outExt[6], int id) { void* inPtr = inData[0][0]->GetScalarPointerForExtent(outExt); void* outPtr = outData[0]->GetScalarPointerForExtent(outExt); // this filter expects that input is the same type as output. if (inData[0][0]->GetScalarType() != outData[0]->GetScalarType()) { vtkErrorMacro(<< "Execute: input ScalarType, " << inData[0][0]->GetScalarType() << ", must match out ScalarType " << outData[0]->GetScalarType()); return; } switch (inData[0][0]->GetScalarType()) { vtkTemplateMacro(vtkImageLaplacianExecute(this, inData[0][0], static_cast(inPtr), outData[0], static_cast(outPtr), outExt, id)); default: vtkErrorMacro(<< "Execute: Unknown ScalarType"); return; } }