/*========================================================================= Program: Visualization Toolkit Module: vtkBridgeCell.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkBridgeCell * @brief Implementation of vtkGenericAdaptorCell * * It is just an example that show how to implement the Generic. It is also * used for testing and evaluating the Generic. * @sa * vtkGenericAdaptorCell, vtkBridgeDataSet */ #ifndef vtkBridgeCell_h #define vtkBridgeCell_h #include "vtkBridgeExport.h" //for module export macro #include "vtkGenericAdaptorCell.h" class vtkCell; class vtkBridgeDataSet; class vtkBridgeCellIterator; class VTKTESTINGGENERICBRIDGE_EXPORT vtkBridgeCell : public vtkGenericAdaptorCell { public: static vtkBridgeCell* New(); vtkTypeMacro(vtkBridgeCell, vtkGenericAdaptorCell); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Unique identification number of the cell over the whole * data set. This unique key may not be contiguous. */ vtkIdType GetId() override; /** * Does `this' a cell of a dataset? (otherwise, it is a boundary cell) */ int IsInDataSet() override; /** * Type of the current cell. * \post (result==VTK_HIGHER_ORDER_EDGE)|| * (result==VTK_HIGHER_ORDER_TRIANGLE)|| * (result==VTK_HIGHER_ORDER_TETRAHEDRON) */ int GetType() override; /** * Topological dimension of the current cell. * \post valid_result: result>=0 && result<=3 */ int GetDimension() override; /** * Interpolation order of the geometry. * \post positive_result: result>=0 */ int GetGeometryOrder() override; /** * Does the cell have no higher-order interpolation for geometry? * \post definition: result==(GetGeometryOrder()==1) */ int IsGeometryLinear(); /** * Interpolation order of attribute `a' on the cell (may differ by cell). * \pre a_exists: a!=0 * \post positive_result: result>=0 */ int GetAttributeOrder(vtkGenericAttribute* a) override; /** * Does the attribute `a' have no higher-order interpolation for the cell? * \pre a_exists: a!=0 * \post definition: result==(GetAttributeOrder()==1) */ vtkTypeBool IsAttributeLinear(vtkGenericAttribute* a); /** * Is the cell primary (i.e. not composite) ? */ int IsPrimary() override; /** * Number of points that compose the cell. * \post positive_result: result>=0 */ int GetNumberOfPoints() override; /** * Return the number of boundaries of dimension `dim' (or all dimensions * greater than 0 and less than GetDimension() if -1) of the cell. * When \a dim is -1, the number of vertices is not included in the * count because vertices are a special case: a vertex will have * at most a single field value associated with it; DOF nodes may have * an arbitrary number of field values associated with them. * \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim=0 */ int GetNumberOfBoundaries(int dim = -1) override; /** * Accumulated number of DOF nodes of the current cell. A DOF node is * a component of cell with a given topological dimension. e.g.: a triangle * has 4 DOF: 1 face and 3 edges. An hexahedron has 19 DOF: * 1 region, 6 faces, and 12 edges. * The number of vertices is not included in the * count because vertices are a special case: a vertex will have * at most a single field value associated with it; DOF nodes may have * an arbitrary number of field values associated with them. * \post valid_result: result==GetNumberOfBoundaries(-1)+1 */ int GetNumberOfDOFNodes() override; /** * Return the points of cell into `it'. * \pre it_exists: it!=0 */ void GetPointIterator(vtkGenericPointIterator* it) override; /** * Create an empty cell iterator. * \post result_exists: result!=0 */ vtkGenericCellIterator* NewCellIterator() override; /** * Return in `boundaries' the cells of dimension `dim' (or all dimensions * less than GetDimension() if -1) that are part of the boundary of the cell. * \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dimboundary->GetDimension()) of the dataset * that share the boundary `boundary' of `this'. * `this' IS NOT INCLUDED. * \pre boundary_exists: boundary!=0 * \pre real_boundary: !boundary->IsInDataSet() * \pre cell_of_the_dataset: IsInDataSet() * \pre boundary: HasBoundary(boundary) * \post positive_result: result>=0 */ int CountNeighbors(vtkGenericAdaptorCell* boundary) override; void CountEdgeNeighbors(int* sharing) override; ///@} /** * Put into `neighbors' the cells (dimension>boundary->GetDimension()) * of the dataset that share the boundary `boundary' of `this'. * `this' IS NOT INCLUDED. * \pre boundary_exists: boundary!=0 * \pre real_boundary: !boundary->IsInDataSet() * \pre cell_of_the_dataset: IsInDataSet() * \pre boundary: HasBoundary(boundary) * \pre neighbors_exist: neighbors!=0 */ void GetNeighbors(vtkGenericAdaptorCell* boundary, vtkGenericCellIterator* neighbors) override; /** * Compute the closest boundary of the current sub-cell `subId' for point * `pcoord' (in parametric coordinates) in `boundary', and return whether * the point is inside the cell or not. `boundary' is of dimension * GetDimension()-1. * \pre positive_subId: subId>=0 */ int FindClosestBoundary(int subId, double pcoords[3], vtkGenericCellIterator*& boundary) override; /** * Is `x' inside the current cell? It also evaluate parametric coordinates * `pcoords', sub-cell id `subId' (0 means primary cell), distance squared * to the sub-cell in `dist2' and closest corner point `closestPoint'. * `dist2' and `closestPoint' are not evaluated if `closestPoint'==0. * If a numerical error occurred, -1 is returned and all other results * should be ignored. * \post valid_result: result==-1 || result==0 || result==1 * \post positive_distance: result!=-1 implies (closestPoint!=0 implies * dist2>=0) */ int EvaluatePosition( const double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2) override; /** * Determine global coordinates `x' from sub-cell `subId' and parametric * coordinates `pcoords' in the cell. * \pre positive_subId: subId>=0 * \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1]) * &&(pcoords[1]<=1)&&(0<=pcoords[2])&&(pcoords[2]<=1) */ void EvaluateLocation(int subId, double pcoords[3], double x[3]) override; /** * Interpolate the attribute `a' at local position `pcoords' of the cell into * `val'. * \pre a_exists: a!=0 * \pre a_is_point_centered: a->GetCentering()==vtkPointCentered * \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 && * pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1 * \pre val_exists: val!=0 * \pre valid_size: sizeof(val)==a->GetNumberOfComponents() */ void InterpolateTuple(vtkGenericAttribute* a, double pcoords[3], double* val) override; /** * Interpolate the whole collection of attributes `c' at local position * `pcoords' of the cell into `val'. Only point centered attributes are * taken into account. * \pre c_exists: c!=0 * \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 && * pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1 * \pre val_exists: val!=0 * \pre valid_size: sizeof(val)==c->GetNumberOfPointCenteredComponents() */ void InterpolateTuple(vtkGenericAttributeCollection* c, double pcoords[3], double* val) override; #if 0 /** * Generate a contour (contouring primitives) for each `values' or with * respect to an implicit function `f'. Contouring * is performed on the scalar attribute (`attributes->GetActiveAttribute()', * `attributes->GetActiveComponent()'). * Contouring interpolates the * `attributes->GetNumberOfattributesToInterpolate()' attributes * `attributes->GetAttributesToInterpolate()'. * `locator', `verts', `lines', `polys', `outPd' and `outCd' are cumulative * data arrays over cell iterations: they store the result of each call * to Contour(): * - `locator' is points list that merges points as they are inserted (i.e., * prevents duplicates). * - `verts' is an array of generated vertices * - `lines' is an array of generated lines * - `polys' is an array of generated polygons * - `outPd' is an array of interpolated point data along the edge (if * not-NULL) * - `outCd' is an array of copied cell data of the current cell (if * not-NULL) * Note: the CopyAllocate() method must be invoked on both the output cell * and point data. * NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a * `vtkInformation'. * \pre values_exist: (values!=0 && f==0) || (values==0 && f!=0) * \pre attributes_exist: attributes!=0 * \pre locator_exists: locator!=0 * \pre verts_exist: verts!=0 * \pre lines_exist: lines!=0 * \pre polys_exist: polys!=0 */ virtual void Contour(vtkContourValues *values, vtkImplicitFunction *f, vtkGenericAttributeCollection *attributes, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *outPd, vtkCellData *outCd); #endif #if 0 /** * Cut (or clip) the current cell with respect to the contour defined by the * `value' or the implicit function `f' of the scalar attribute * (`attributes->GetActiveAttribute()',`attributes->GetActiveComponent()'). * If `f' exists, `value' is not used. The output is the part * of the current cell which is inside the contour. * The output is a set of zero, one or more cells of the same topological * dimension as the current cell. Normally, cell points whose scalar value * is greater than "value" are considered inside. If `insideOut' is on, this * is reversed. * Clipping interpolates the * `attributes->GetNumberOfattributesToInterpolate()' attributes * `attributes->GetAttributesToInterpolate()'. * `locator', `connectivity', `outPd' and `outCd' are cumulative * data arrays over cell iterations: they store the result of each call * to Clip(): * - `locator' is points list that merges points as they are inserted (i.e., * prevents duplicates). * - `connectivity' is an array of generated cells * - `outPd' is an array of interpolated point data along the edge (if * not-NULL) * - `outCd' is an array of copied cell data of the current cell (if * not-NULL) * Note: the CopyAllocate() method must be invoked on both the output cell * and point data. * Also, if the output cell data is * non-NULL, the cell data from the clipped cell is passed to the generated * contouring primitives. (Note: the CopyAllocate() method must be invoked on * both the output cell and point data.) * NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a * `vtkInformation'. * \pre attributes_exist: attributes!=0 * \pre tess_exists: tess!=0 * \pre locator_exists: locator!=0 * \pre connectivity_exists: connectivity!=0 */ virtual void Clip(double value, vtkImplicitFunction *f, vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, int insideOut, vtkPointLocator *locator, vtkCellArray *connectivity, vtkPointData *outPd, vtkCellData *outCd); #endif /** * Is there an intersection between the current cell and the ray (`p1',`p2') * according to a tolerance `tol'? If true, `x' is the global intersection, * `t' is the parametric coordinate for the line, `pcoords' are the * parametric coordinates for cell. `subId' is the sub-cell where * the intersection occurs. * \pre positive_tolerance: tol>0 */ int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; /** * Compute derivatives `derivs' of the attribute `attribute' (from its * values at the corner points of the cell) given sub-cell `subId' (0 means * primary cell) and parametric coordinates `pcoords'. * Derivatives are in the x-y-z coordinate directions for each data value. * \pre positive_subId: subId>=0 * \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1]) * &&(pcoords[1]<=1)&&(0<=pcoords[2])%%(pcoords[2]<=1) * \pre attribute_exists: attribute!=0 * \pre derivs_exists: derivs!=0 * \pre valid_size: sizeof(derivs)>=attribute->GetNumberOfComponents()*3 */ void Derivatives( int subId, double pcoords[3], vtkGenericAttribute* attribute, double* derivs) override; /** * Compute the bounding box of the current cell in `bounds' in global * coordinates. * THREAD SAFE */ void GetBounds(double bounds[6]) override; /** * Return the bounding box of the current cell in global coordinates. * NOT THREAD SAFE * \post result_exists: result!=0 * \post valid_size: sizeof(result)>=6 */ double* GetBounds() override; /** * Bounding box diagonal squared of the current cell. * \post positive_result: result>=0 */ double GetLength2() override; /** * Center of the current cell in parametric coordinates `pcoords'. * If the current cell is a composite, the return value is the sub-cell id * that the center is in. * \post valid_result: (result>=0) && (IsPrimary() implies result==0) */ int GetParametricCenter(double pcoords[3]) override; /** * Distance of the parametric coordinate `pcoords' to the current cell. * If inside the cell, a distance of zero is returned. This is used during * picking to get the correct cell picked. (The tolerance will occasionally * allow cells to be picked who are not really intersected "inside" the * cell.) * \post positive_result: result>=0 */ double GetParametricDistance(const double pcoords[3]) override; /** * Return a contiguous array of parametric coordinates of the points defining * the current cell. In other words, (px,py,pz, px,py,pz, etc..) The * coordinates are ordered consistent with the definition of the point * ordering for the cell. Note that 3D parametric coordinates are returned * no matter what the topological dimension of the cell. It includes the DOF * nodes. * \post valid_result_exists: ((IsPrimary()) && (result!=0)) || * ((!IsPrimary()) && (result==0)) * result!=0 implies sizeof(result)==GetNumberOfPoints() */ double* GetParametricCoords() override; #if 0 ///@{ /** * Tessellate the cell if it is not linear or if at least one attribute of * `attributes' is not linear. The output are linear cells of the same * dimension than than cell. If the cell is linear and all attributes are * linear, the output is just a copy of the current cell. * `points', `cellArray', `pd' and `cd' are cumulative output data arrays * over cell iterations: they store the result of each call to Tessellate(). * \pre attributes_exist: attributes!=0 * \pre points_exist: points!=0 * \pre cellArray_exists: cellArray!=0 * \pre pd_exist: pd!=0 * \pre cd_exists: cd!=0 */ virtual void Tessellate(vtkGenericAttributeCollection *attributes, vtkPoints *points, vtkCellArray* cellArray, vtkPointData *pd, vtkCellData* cd); #endif // For the internals of the tessellation algorithm (the hash table in particular) int IsFaceOnBoundary(vtkIdType faceId) override; int IsOnBoundary() override; ///@} ///@{ /** * Put into `id' the list of ids the point of the cell. * \pre id_exists: id!=0 * \pre valid_size: sizeof(id)==GetNumberOfPoints(); */ void GetPointIds(vtkIdType* id) override; #if 0 virtual void TriangulateFace(vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, int index, vtkPoints *pts, vtkCellArray *cellArray, vtkPointData *pd, vtkCellData *cd ); #endif ///@} /** * Return the ids of the vertices defining face `faceId'. * \pre is_3d: this->GetDimension()==3 * \pre valid_faceId_range: faceId>=0 && faceIdGetNumberOfBoundaries(2) * \post result_exists: result!=0 * \post valid_size: sizeof(result)>=GetNumberOfVerticesOnFace(faceId) * * @note The return type changed. It used to be int*, it is now const vtkIdType*. * This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids * can be used as inputs in algorithms such as vtkPolygon::ComputeNormal. */ const vtkIdType* GetFaceArray(vtkIdType faceId) override; /** * Return the number of vertices defining face `faceId' * \pre is_3d: this->GetDimension()==3 * \pre valid_faceId_range: faceId>=0 && faceIdGetNumberOfBoundaries(2) * \post positive_result: && result>0 */ int GetNumberOfVerticesOnFace(int faceId) override; /** * Return the ids of the vertices defining edge `edgeId'. * \pre valid_dimension: this->GetDimension()>=2 * \pre valid_edgeId_range: edgeId>=0 && edgeIdGetNumberOfBoundaries(1) * \post result_exists: result!=0 * \post valid_size: sizeof(result)==2 * * @note The return type changed. It used to be int*, it is now const vtkIdType*. * This is so ids are unified between vtkCell and vtkPoints. */ const vtkIdType* GetEdgeArray(vtkIdType edgeId) override; /** * Used internally for the Bridge. * Initialize the cell from a dataset `ds' and `cellid'. * \pre ds_exists: ds!=0 * \pre valid_cellid: (cellid>=0) && (cellidGetNumberOfCells()) */ void Init(vtkBridgeDataSet* ds, vtkIdType cellid); /** * Used internally for the Bridge. * Initialize the cell from a cell `c' and an `id'. * \pre c_exists: c!=0 */ void InitWithCell(vtkCell* c, vtkIdType id); /** * Recursive copy of `other' into `this'. * \pre other_exists: other!=0 * \pre other_differ: this!=other */ void DeepCopy(vtkBridgeCell* other); protected: vtkBridgeCell(); ~vtkBridgeCell() override; /** * Allocate an array for the weights, only if it does not exist yet or if * the capacity is too small. */ void AllocateWeights(); /** * Compute the weights for parametric coordinates `pcoords'. */ void InterpolationFunctions(const double pcoords[3], double* weights); friend class vtkBridgeDataSet; friend class vtkBridgeAttribute; friend class vtkBridgeCellIterator; friend class vtkBridgeCellIteratorOnDataSet; friend class vtkBridgeCellIteratorOne; friend class vtkBridgeCellIteratorOnCellBoundaries; friend class vtkBridgePointIteratorOnCell; vtkCell* Cell; vtkBridgeDataSet* DataSet; vtkIdType Id; // what does it mean for boundary cells? int BoolIsInDataSet; vtkBridgeCellIterator* InternalIterator; // used in Contour double* Weights; // interpolation functions int WeightsCapacity; private: vtkBridgeCell(const vtkBridgeCell&) = delete; void operator=(const vtkBridgeCell&) = delete; }; #endif