/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkChiSquareDistribution_h #define itkChiSquareDistribution_h #include "itkProbabilityDistribution.h" #include "itkNumericTraits.h" #include "ITKStatisticsExport.h" namespace itk { namespace Statistics { /** \class ChiSquareDistribution * \brief ChiSquareDistribution class defines the interface for a * univariate Chi-Square distribution (pdfs, cdfs, etc.). * * ChiSquareDistribution provides access to the probability density * function (pdf), the cumulative distribution function (cdf), and the * inverse cumulative distribution function for a Chi-Square distribution. * * The EvaluatePDF(), EvaluateCDF, EvaluateInverseCDF() methods are * all virtual, allowing algorithms to be written with an abstract * interface to a distribution (with said distribution provided to the * algorithm at run-time). Static methods, not requiring an instance * of the distribution, are also provided. The static methods allow * for optimized access to distributions when the distribution is * known a priori to the algorithm. * * ChiSquareDistributions are univariate. Multivariate versions may * be provided under a separate superclass (since the parameters to the * pdf and cdf would have to be vectors not scalars). * * ChiSquareDistributions can be used for Chi-Square tests. * * \note This work is part of the National Alliance for Medical Image * Computing (NAMIC), funded by the National Institutes of Health * through the NIH Roadmap for Medical Research, Grant U54 EB005149. * Information on the National Centers for Biomedical Computing * can be obtained from http://commonfund.nih.gov/bioinformatics. * \ingroup ITKStatistics */ class ITKStatistics_EXPORT ChiSquareDistribution : public ProbabilityDistribution { public: ITK_DISALLOW_COPY_AND_MOVE(ChiSquareDistribution); /** Standard class type aliases */ using Self = ChiSquareDistribution; using Superclass = ProbabilityDistribution; using Pointer = SmartPointer; using ConstPointer = SmartPointer; /** \see LightObject::GetNameOfClass() */ itkOverrideGetNameOfClassMacro(ChiSquareDistribution); /** Method for creation through the object factory. */ itkNewMacro(Self); /** Return the number of parameters. For a Chi-Square * distribution, the number of parameters is 1 (degrees of freedom) */ SizeValueType GetNumberOfParameters() const override { return 1; } /** Evaluate the probability density function (pdf). The parameters * of the distribution are assigned via SetParameters(). */ double EvaluatePDF(double x) const override; /** Evaluate the probability density function (pdf). The parameters * for the distribution are passed as a parameters vector. The * ordering of the parameters is (degrees of freedom). */ double EvaluatePDF(double x, const ParametersType &) const override; /** Evaluate the probability density function (pdf). The parameters * of the distribution are passed as separate parameters. */ virtual double EvaluatePDF(double x, SizeValueType degreesOfFreedom) const; /** Evaluate the cumulative distribution function (cdf). The parameters * of the distribution are assigned via SetParameters(). */ double EvaluateCDF(double x) const override; /** Evaluate the cumulative distribution function (cdf). The parameters * for the distribution are passed as a parameters vector. The * ordering of the parameters is (degreesOfFreedom). */ double EvaluateCDF(double x, const ParametersType &) const override; /** Evaluate the cumulative distribution function (cdf). The parameters * of the distribution are passed as separate parameters. */ virtual double EvaluateCDF(double x, SizeValueType degreesOfFreedom) const; /** Evaluate the inverse cumulative distribution function (inverse * cdf). Parameter p must be between 0.0 and 1.0. The parameters * of the distribution are assigned via SetParameters(). */ double EvaluateInverseCDF(double p) const override; /** Evaluate the inverse cumulative distribution function (inverse * cdf). Parameter p must be between 0.0 and 1.0. The parameters * for the distribution are passed as a parameters vector. The * ordering of the parameters is (degrees of freedom). */ double EvaluateInverseCDF(double p, const ParametersType &) const override; /** Evaluate the inverse cumulative distribution function (inverse * cdf). Parameter p must be between 0.0 and 1.0. The parameters * of the distribution are passed as separate parameters. */ virtual double EvaluateInverseCDF(double p, SizeValueType degreesOfFreedom) const; /** Set the number of degrees of freedom in the Chi-Square distribution. * Defaults to 1 */ virtual void SetDegreesOfFreedom(SizeValueType); /** Get the number of degrees of freedom in the t * distribution. Defaults to 1 */ virtual SizeValueType GetDegreesOfFreedom() const; /** Does the Chi-Square distribution have a mean? */ bool HasMean() const override { return true; } /** Get the mean of the distribution. */ double GetMean() const override; /** Does the Chi-Square distribution have a variance? */ bool HasVariance() const override { return true; } /** Get the variance of the distribution. */ double GetVariance() const override; /** Static method to evaluate the probability density function (pdf) * of a Chi-Square with a specified number of degrees of freedom. The * static method provides optimized access without requiring an * instance of the class. The degrees of freedom for the * distribution are passed in a parameters vector. */ static double PDF(double x, const ParametersType &); /** Static method to evaluate the probability density function (pdf) * of a Chi-Square with a specified number of degrees of freedom. The * static method provides optimized access without requiring an * instance of the class. */ static double PDF(double x, SizeValueType degreesOfFreedom); /** Static method to evaluate the cumulative distribution function * (cdf) of a Chi-Square with a specified number of degrees of * freedom. The static method provides optimized access without * requiring an instance of the class. The degrees of freedom are * passed as a parameters vector. * * This is based on Abramowitz and Stegun 26.7.1. Accuracy is * approximately 10^-14. */ static double CDF(double x, const ParametersType &); /** Static method to evaluate the cumulative distribution function * (cdf) of a Chi-Square with a specified number of degrees of * freedom. The static method provides optimized access without * requiring an instance of the class. * * This is based on Abramowitz and Stegun 26.7.1. Accuracy is * approximately 10^-14. */ static double CDF(double x, SizeValueType degreesOfFreedom); /** Static method to evaluate the inverse cumulative distribution * function of a Chi-Square with a specified number of degrees of * freedom. The static method provides optimized access without * requiring an instance of the class. Parameter p must be between * 0.0 and 1.0. The degrees of freedom are passed as a parameters vector. * * This is based on Abramowitz and Stegun 26.7.5 followed by a few * Newton iterations to improve the precision at low degrees of * freedom. Accuracy is approximately 10^-10. **/ static double InverseCDF(double p, const ParametersType &); /** Static method to evaluate the inverse cumulative distribution * function of a Chi-Square with a specified number of degrees of * freedom. The static method provides optimized access without * requiring an instance of the class. Parameter p must be between * 0.0 and 1.0. * * This is based on Abramowitz and Stegun 26.7.5 followed by a few * Newton iterations to improve the precision at low degrees of * freedom. Accuracy is approximately 10^-10. **/ static double InverseCDF(double p, SizeValueType degreesOfFreedom); protected: ChiSquareDistribution(); ~ChiSquareDistribution() override = default; void PrintSelf(std::ostream & os, Indent indent) const override; }; // end of class } // end of namespace Statistics } // end namespace itk #endif