/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkCurvatureNDAnisotropicDiffusionFunction_hxx #define itkCurvatureNDAnisotropicDiffusionFunction_hxx namespace itk { template double CurvatureNDAnisotropicDiffusionFunction::m_MIN_NORM = 1.0e-10; template CurvatureNDAnisotropicDiffusionFunction::CurvatureNDAnisotropicDiffusionFunction() : m_K(0.0) { unsigned int i, j; RadiusType r; for (i = 0; i < ImageDimension; ++i) { r[i] = 1; } this->SetRadius(r); // Dummy neighborhood used to set up the slices. Neighborhood it; it.SetRadius(r); // Slice the neighborhood m_Center = it.Size() / 2; for (i = 0; i < ImageDimension; ++i) { m_Stride[i] = it.GetStride(i); x_slice[i] = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]); } for (i = 0; i < ImageDimension; ++i) { for (j = 0; j < ImageDimension; ++j) { // For taking derivatives in the i direction that are offset one // pixel in the j direction. xa_slice[i][j] = std::slice((m_Center + m_Stride[j]) - m_Stride[i], 3, m_Stride[i]); xd_slice[i][j] = std::slice((m_Center - m_Stride[j]) - m_Stride[i], 3, m_Stride[i]); } } // Allocate the derivative operator. m_DerivativeOperator.SetDirection(0); // Not relevant, will be applied in a slice-based // fashion. m_DerivativeOperator.SetOrder(1); m_DerivativeOperator.CreateDirectional(); } template auto CurvatureNDAnisotropicDiffusionFunction::ComputeUpdate(const NeighborhoodType & it, void * itkNotUsed(globalData), const FloatOffsetType & itkNotUsed(offset)) -> PixelType { unsigned int i, j; double speed, dx_forward_Cn, dx_backward_Cn, propagation_gradient; double grad_mag_sq, grad_mag_sq_d, grad_mag, grad_mag_d; double Cx, Cxd; double dx_forward[ImageDimension]; double dx_backward[ImageDimension]; double dx[ImageDimension]; double dx_aug; double dx_dim; // Calculate the partial derivatives for each dimension for (i = 0; i < ImageDimension; ++i) { // "Half" derivatives dx_forward[i] = it.GetPixel(m_Center + m_Stride[i]) - it.GetPixel(m_Center); dx_forward[i] *= this->m_ScaleCoefficients[i]; dx_backward[i] = it.GetPixel(m_Center) - it.GetPixel(m_Center - m_Stride[i]); dx_backward[i] *= this->m_ScaleCoefficients[i]; // Centralized differences dx[i] = m_InnerProduct(x_slice[i], it, m_DerivativeOperator); dx[i] *= this->m_ScaleCoefficients[i]; } speed = 0.0; for (i = 0; i < ImageDimension; ++i) { // Gradient magnitude approximations grad_mag_sq = dx_forward[i] * dx_forward[i]; grad_mag_sq_d = dx_backward[i] * dx_backward[i]; for (j = 0; j < ImageDimension; ++j) { if (j != i) { dx_aug = m_InnerProduct(xa_slice[j][i], it, m_DerivativeOperator); dx_aug *= this->m_ScaleCoefficients[j]; dx_dim = m_InnerProduct(xd_slice[j][i], it, m_DerivativeOperator); dx_dim *= this->m_ScaleCoefficients[j]; grad_mag_sq += 0.25f * (dx[j] + dx_aug) * (dx[j] + dx_aug); grad_mag_sq_d += 0.25f * (dx[j] + dx_dim) * (dx[j] + dx_dim); } } grad_mag = std::sqrt(m_MIN_NORM + grad_mag_sq); grad_mag_d = std::sqrt(m_MIN_NORM + grad_mag_sq_d); // Conductance Terms if (m_K == 0.0) { Cx = 0.0; Cxd = 0.0; } else { Cx = std::exp(grad_mag_sq / m_K); Cxd = std::exp(grad_mag_sq_d / m_K); } // First order normalized finite-difference conductance products dx_forward_Cn = (dx_forward[i] / grad_mag) * Cx; dx_backward_Cn = (dx_backward[i] / grad_mag_d) * Cxd; // Second order conductance-modified curvature speed += (dx_forward_Cn - dx_backward_Cn); } // "Upwind" gradient magnitude term propagation_gradient = 0.0; if (speed > 0) { for (i = 0; i < ImageDimension; ++i) { propagation_gradient += itk::Math::sqr(std::min(dx_backward[i], 0.0)) + itk::Math::sqr(std::max(dx_forward[i], 0.0)); } } else { for (i = 0; i < ImageDimension; ++i) { propagation_gradient += itk::Math::sqr(std::max(dx_backward[i], 0.0)) + itk::Math::sqr(std::min(dx_forward[i], 0.0)); } } return static_cast(std::sqrt(propagation_gradient) * speed); } } // end namespace itk #endif