/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkElasticBodyReciprocalSplineKernelTransform_h #define itkElasticBodyReciprocalSplineKernelTransform_h #include "itkKernelTransform.h" namespace itk { /** \class ElasticBodyReciprocalSplineKernelTransform * This class defines the elastic body spline (EBS) transformation. * It is implemented in as straightforward a manner as possible from * the IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms, * Vol. 16 No. 3 June 1997 * Taken from the paper: * The EBS "is based on a physical model of a homogeneous, isotropic, * three-dimensional elastic body. The model can approximate the way * that some physical objects deform". * * \ingroup ITKTransform */ template class ITK_TEMPLATE_EXPORT ElasticBodyReciprocalSplineKernelTransform : public KernelTransform { public: ITK_DISALLOW_COPY_AND_MOVE(ElasticBodyReciprocalSplineKernelTransform); /** Standard class type aliases. */ using Self = ElasticBodyReciprocalSplineKernelTransform; using Superclass = KernelTransform; using Pointer = SmartPointer; using ConstPointer = SmartPointer; /** \see LightObject::GetNameOfClass() */ itkOverrideGetNameOfClassMacro(ElasticBodyReciprocalSplineKernelTransform); /** New macro for creation of through a Smart Pointer */ itkNewMacro(Self); /** Scalar type. */ using typename Superclass::ScalarType; /** Parameters type. */ using typename Superclass::ParametersType; using typename Superclass::FixedParametersType; /** Jacobian type. */ using typename Superclass::JacobianType; using typename Superclass::JacobianPositionType; using typename Superclass::InverseJacobianPositionType; /** Dimension of the domain space. */ static constexpr unsigned int SpaceDimension = Superclass::SpaceDimension; /** Set alpha. Alpha is related to Poisson's Ratio (\f$\nu\f$) as * \f$\alpha = 8 ( 1 - \nu ) - 1\f$ */ itkSetMacro(Alpha, TParametersValueType); /** Get alpha */ itkGetConstMacro(Alpha, TParametersValueType); using typename Superclass::InputPointType; using typename Superclass::OutputPointType; using typename Superclass::InputVectorType; using typename Superclass::OutputVectorType; using typename Superclass::InputCovariantVectorType; using typename Superclass::OutputCovariantVectorType; protected: ElasticBodyReciprocalSplineKernelTransform(); ~ElasticBodyReciprocalSplineKernelTransform() override = default; void PrintSelf(std::ostream & os, Indent indent) const override; using typename Superclass::GMatrixType; /** Compute G(x) * For the elastic body spline, this is: * G(x) = [alpha*r(x)*I - 3*x*x'/r(x)] * \f$ G(x) = [\alpha*r(x)*I - 3*x*x'/r(x) ]\f$ * where * \f$\alpha = 8 ( 1 - \nu ) - 1\f$ * \f$\nu\f$ is Poisson's Ratio * r(x) = Euclidean norm = sqrt[x1^2 + x2^2 + x3^2] * \f[ r(x) = \sqrt{ x_1^2 + x_2^2 + x_3^2 } \f] * I = identity matrix */ void ComputeG(const InputVectorType & x, GMatrixType & gmatrix) const override; /** alpha, Poisson's ratio */ TParametersValueType m_Alpha{}; }; } // namespace itk #ifndef ITK_MANUAL_INSTANTIATION # include "itkElasticBodyReciprocalSplineKernelTransform.hxx" #endif #endif // itkElasticBodyReciprocalSplineKernelTransform_h