/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkEuler3DTransform_h #define itkEuler3DTransform_h #include #include "itkRigid3DTransform.h" namespace itk { /** \class Euler3DTransform * * \brief Euler3DTransform of a vector space (e.g. space coordinates) * * This transform applies a rotation and translation to the space given 3 euler * angles and a 3D translation. Rotation is about a user specified center. * * The parameters for this transform can be set either using individual Set * methods or in serialized form using SetParameters() and SetFixedParameters(). * * The serialization of the optimizable parameters is an array of 6 elements. * The first 3 represents three euler angle of rotation respectively about * the X, Y and Z axis. The last 3 parameters defines the translation in each * dimension. * * The serialization of the fixed parameters is an array of 4 elements. * The first 3 elements define the center of rotation. The final * element indicates the status of ComputeZYX (i.e. 1.0 if true, 0.0 if false). * * \ingroup ITKTransform */ template class ITK_TEMPLATE_EXPORT Euler3DTransform : public Rigid3DTransform { public: ITK_DISALLOW_COPY_AND_MOVE(Euler3DTransform); /** Standard class type aliases. */ using Self = Euler3DTransform; using Superclass = Rigid3DTransform; using Pointer = SmartPointer; using ConstPointer = SmartPointer; /** New macro for creation of through a Smart Pointer. */ itkNewMacro(Self); /** \see LightObject::GetNameOfClass() */ itkOverrideGetNameOfClassMacro(Euler3DTransform); /** Dimension of the space. */ static constexpr unsigned int SpaceDimension = 3; static constexpr unsigned int InputSpaceDimension = 3; static constexpr unsigned int OutputSpaceDimension = 3; static constexpr unsigned int ParametersDimension = 6; using typename Superclass::ParametersType; using typename Superclass::ParametersValueType; using typename Superclass::FixedParametersType; using typename Superclass::FixedParametersValueType; using typename Superclass::JacobianType; using typename Superclass::JacobianPositionType; using typename Superclass::InverseJacobianPositionType; using typename Superclass::ScalarType; using typename Superclass::InputVectorType; using typename Superclass::OutputVectorType; using typename Superclass::InputCovariantVectorType; using typename Superclass::OutputCovariantVectorType; using typename Superclass::InputVnlVectorType; using typename Superclass::OutputVnlVectorType; using typename Superclass::InputPointType; using typename Superclass::OutputPointType; using typename Superclass::MatrixType; using typename Superclass::InverseMatrixType; using typename Superclass::CenterType; using typename Superclass::TranslationType; using typename Superclass::OffsetType; using AngleType = typename Superclass::ScalarType; /** Set/Get the transformation from a container of parameters * This is typically used by optimizers. There are 6 parameters. The first * three represent the angles to rotate around the coordinate axis, and the * last three represents the offset. */ void SetParameters(const ParametersType & parameters) override; const ParametersType & GetParameters() const override; const FixedParametersType & GetFixedParameters() const override; void SetFixedParameters(const FixedParametersType & parameters) override; /** Set the rotational part of the transform. */ void SetRotation(ScalarType angleX, ScalarType angleY, ScalarType angleZ); itkGetConstMacro(AngleX, ScalarType); itkGetConstMacro(AngleY, ScalarType); itkGetConstMacro(AngleZ, ScalarType); /** This method computes the Jacobian matrix of the transformation. * given point or vector, returning the transformed point or * vector. The rank of the Jacobian will also indicate if the * transform is invertible at this point. */ void ComputeJacobianWithRespectToParameters(const InputPointType & p, JacobianType & jacobian) const override; using Superclass::ComputeJacobianWithRespectToPosition; /** The Euler angle representation of a rotation is not unique and * depends on the order of rotations. In general there are 12 * options. This class supports two of them, ZXY and ZYX. The * default is ZXY. These functions set and get the value which * indicates whether the rotation is ZYX or ZXY. */ virtual void SetComputeZYX(const bool flag); itkGetConstMacro(ComputeZYX, bool); /** Set the state to the identity. * * Sets the angles to a 0 value. */ void SetIdentity() override; protected: Euler3DTransform(const MatrixType & matrix, const OutputPointType & offset); Euler3DTransform(unsigned int parametersDimension); Euler3DTransform(); ~Euler3DTransform() override = default; void PrintSelf(std::ostream & os, Indent indent) const override; /** Set values of angles directly without recomputing other parameters. */ void SetVarRotation(ScalarType angleX, ScalarType angleY, ScalarType angleZ); /** Compute the components of the rotation matrix in the superclass. */ void ComputeMatrix() override; /** Compute angles from the rotation matrix. */ void ComputeMatrixParameters() override; private: ScalarType m_AngleX{}; ScalarType m_AngleY{}; ScalarType m_AngleZ{}; bool m_ComputeZYX{}; }; // class Euler3DTransform } // namespace itk #ifndef ITK_MANUAL_INSTANTIATION # include "itkEuler3DTransform.hxx" #endif #endif /* itkEuler3DTransform_h */