/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkGPUGradientNDAnisotropicDiffusionFunction_h #define itkGPUGradientNDAnisotropicDiffusionFunction_h #include "itkGPUScalarAnisotropicDiffusionFunction.h" #include "itkNeighborhoodAlgorithm.h" #include "itkNeighborhoodInnerProduct.h" #include "itkDerivativeOperator.h" namespace itk { /** * \class GPUGradientNDAnisotropicDiffusionFunction * * This class implements an N-dimensional version of the classic Perona-Malik * anisotropic diffusion equation for scalar-valued images on the GPU. See * itkAnisotropicDiffusionFunction for an overview of the anisotropic diffusion * framework and equation. * * \par * The conductance term for this implementation is chosen as a function of the * gradient magnitude of the image at each point, reducing the strength of * diffusion at edge pixels. * * \f[C(\mathbf{x}) = e^{-(\frac{\parallel \nabla U(\mathbf{x}) \parallel}{K})^2}\f]. * * \par * The numerical implementation of this equation is similar to that described * in the Perona-Malik paper below, but uses a more robust technique * for gradient magnitude estimation and has been generalized to N-dimensions. * * \par References * Pietro Perona and Jalhandra Malik, ``Scale-space and edge detection using * anisotropic diffusion,'' IEEE Transactions on Pattern Analysis Machine * Intelligence, vol. 12, pp. 629-639, 1990. * * \ingroup ITKGPUAnisotropicSmoothing */ /** Create a helper GPU Kernel class for GPUGradientNDAnisotropicDiffusionFunction */ itkGPUKernelClassMacro(GPUGradientNDAnisotropicDiffusionFunctionKernel); template class ITK_TEMPLATE_EXPORT GPUGradientNDAnisotropicDiffusionFunction : public GPUScalarAnisotropicDiffusionFunction { public: ITK_DISALLOW_COPY_AND_MOVE(GPUGradientNDAnisotropicDiffusionFunction); /** Standard class type aliases. */ using Self = GPUGradientNDAnisotropicDiffusionFunction; using Superclass = GPUScalarAnisotropicDiffusionFunction; using Pointer = SmartPointer; using ConstPointer = SmartPointer; /** Method for creation through the object factory. */ itkNewMacro(Self); /** \see LightObject::GetNameOfClass() */ itkOverrideGetNameOfClassMacro(GPUGradientNDAnisotropicDiffusionFunction); /** Inherit some parameters from the superclass type. */ using typename Superclass::ImageType; using typename Superclass::PixelType; using typename Superclass::PixelRealType; using typename Superclass::TimeStepType; using typename Superclass::RadiusType; using typename Superclass::NeighborhoodType; using typename Superclass::FloatOffsetType; using NeighborhoodSizeValueType = SizeValueType; /** Inherit some parameters from the superclass type. */ static constexpr unsigned int ImageDimension = Superclass::ImageDimension; /** Get OpenCL Kernel source as a string, creates a GetOpenCLSource method */ itkGetOpenCLSourceFromKernelMacro(GPUGradientNDAnisotropicDiffusionFunctionKernel); /** Compute the equation value. */ void GPUComputeUpdate(const typename TImage::Pointer output, typename TImage::Pointer buffer, void * globalData) override; /** This method is called prior to each iteration of the solver. */ void InitializeIteration() override { m_K = static_cast(this->GetAverageGradientMagnitudeSquared() * this->GetConductanceParameter() * this->GetConductanceParameter() * -2.0f); } protected: GPUGradientNDAnisotropicDiffusionFunction(); ~GPUGradientNDAnisotropicDiffusionFunction() override = default; /** Inner product function. */ NeighborhoodInnerProduct m_InnerProduct{}; /** Slices for the ND neighborhood. */ std::slice x_slice[ImageDimension]; std::slice xa_slice[ImageDimension][ImageDimension]; std::slice xd_slice[ImageDimension][ImageDimension]; /** Derivative operator. */ DerivativeOperator m_DerivativeOperator{}; /** Modified global average gradient magnitude term. */ PixelType m_K{}; NeighborhoodSizeValueType m_Center{}; NeighborhoodSizeValueType m_Stride[ImageDimension]{}; static double m_MIN_NORM; }; } // end namespace itk #ifndef ITK_MANUAL_INSTANTIATION # include "itkGPUGradientNDAnisotropicDiffusionFunction.hxx" #endif #endif