/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkGaussianMixtureModelComponent_h #define itkGaussianMixtureModelComponent_h #include "itkMixtureModelComponentBase.h" #include "itkGaussianMembershipFunction.h" #include "itkWeightedMeanSampleFilter.h" #include "itkWeightedCovarianceSampleFilter.h" namespace itk { namespace Statistics { /** * \class GaussianMixtureModelComponent * \brief is a component (derived from MixtureModelComponentBase) for * Gaussian class. This class is used in * ExpectationMaximizationMixtureModelEstimator. * * On every iteration of EM estimation, this class's GenerateData * method is called to compute the new distribution parameters. * * Recent API changes: * The static const macro to get the length of a measurement vector, * \c MeasurementVectorSize has been removed to allow the length of a measurement * vector to be specified at run time. It is now obtained at run time from the * sample set as input. Please use the function * GetMeasurementVectorSize() to get the length. * * \sa MixtureModelComponentBase, ExpectationMaximizationMixtureModelEstimator * \ingroup ITKStatistics */ template class ITK_TEMPLATE_EXPORT GaussianMixtureModelComponent : public MixtureModelComponentBase { public: /**Standard class type aliases. */ using Self = GaussianMixtureModelComponent; using Superclass = MixtureModelComponentBase; using Pointer = SmartPointer; using ConstPointer = SmartPointer; /**Standard Macros */ itkOverrideGetNameOfClassMacro(GaussianMixtureModelComponent); itkNewMacro(Self); /** Typedefs from the superclass */ using typename Superclass::MeasurementVectorType; using typename Superclass::MeasurementVectorSizeType; using typename Superclass::MembershipFunctionType; using typename Superclass::WeightArrayType; using typename Superclass::ParametersType; /** Type of the membership function. Gaussian density function */ using NativeMembershipFunctionType = GaussianMembershipFunction; /** Types of the mean and the covariance calculator that will update * this component's distribution parameters */ using MeanEstimatorType = WeightedMeanSampleFilter; using CovarianceEstimatorType = WeightedCovarianceSampleFilter; /** Type of the mean vector */ using MeanVectorType = typename MeanEstimatorType::OutputType; /** Type of the covariance matrix */ using CovarianceMatrixType = typename CovarianceEstimatorType::OutputType; /** Sets the input sample */ void SetSample(const TSample * sample) override; /** Sets the component's distribution parameters. */ void SetParameters(const ParametersType & parameters) override; protected: GaussianMixtureModelComponent(); ~GaussianMixtureModelComponent() override = default; void PrintSelf(std::ostream & os, Indent indent) const override; /** Returns the sum of squared changes in parameters between * iterations */ double CalculateParametersChange(); /** Computes the new distribution parameters */ void GenerateData() override; private: typename NativeMembershipFunctionType::Pointer m_GaussianMembershipFunction{}; typename MeanEstimatorType::MeasurementVectorType m_Mean{}; typename CovarianceEstimatorType::MatrixType m_Covariance{}; typename MeanEstimatorType::Pointer m_MeanEstimator{}; typename CovarianceEstimatorType::Pointer m_CovarianceEstimator{}; }; // end of class } // end of namespace Statistics } // end of namespace itk #ifndef ITK_MANUAL_INSTANTIATION # include "itkGaussianMixtureModelComponent.hxx" #endif #endif