/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkGradientNDAnisotropicDiffusionFunction_hxx #define itkGradientNDAnisotropicDiffusionFunction_hxx #include "itkNumericTraits.h" namespace itk { template double GradientNDAnisotropicDiffusionFunction::m_MIN_NORM = 1.0e-10; template GradientNDAnisotropicDiffusionFunction::GradientNDAnisotropicDiffusionFunction() : m_K(0.0) { unsigned int i, j; RadiusType r; for (i = 0; i < ImageDimension; ++i) { r[i] = 1; } this->SetRadius(r); // Dummy neighborhood used to set up the slices. Neighborhood it; it.SetRadius(r); // Slice the neighborhood m_Center = it.Size() / 2; for (i = 0; i < ImageDimension; ++i) { m_Stride[i] = it.GetStride(i); } for (i = 0; i < ImageDimension; ++i) { x_slice[i] = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]); } for (i = 0; i < ImageDimension; ++i) { for (j = 0; j < ImageDimension; ++j) { // For taking derivatives in the i direction that are offset one // pixel in the j direction. xa_slice[i][j] = std::slice((m_Center + m_Stride[j]) - m_Stride[i], 3, m_Stride[i]); xd_slice[i][j] = std::slice((m_Center - m_Stride[j]) - m_Stride[i], 3, m_Stride[i]); } } // Allocate the derivative operator. m_DerivativeOperator.SetDirection(0); // Not relevant, will be applied in a slice-based // fashion. m_DerivativeOperator.SetOrder(1); m_DerivativeOperator.CreateDirectional(); } template auto GradientNDAnisotropicDiffusionFunction::ComputeUpdate(const NeighborhoodType & it, void *, const FloatOffsetType &) -> PixelType { unsigned int i, j; double accum; double accum_d; double Cx; double Cxd; // PixelType is scalar in this context PixelRealType delta; PixelRealType dx_forward; PixelRealType dx_backward; PixelRealType dx[ImageDimension]; PixelRealType dx_aug; PixelRealType dx_dim; delta = PixelRealType{}; // Calculate the centralized derivatives for each dimension. for (i = 0; i < ImageDimension; ++i) { dx[i] = (it.GetPixel(m_Center + m_Stride[i]) - it.GetPixel(m_Center - m_Stride[i])) / 2.0f; dx[i] *= this->m_ScaleCoefficients[i]; } for (i = 0; i < ImageDimension; ++i) { // "Half" directional derivatives dx_forward = it.GetPixel(m_Center + m_Stride[i]) - it.GetPixel(m_Center); dx_forward *= this->m_ScaleCoefficients[i]; dx_backward = it.GetPixel(m_Center) - it.GetPixel(m_Center - m_Stride[i]); dx_backward *= this->m_ScaleCoefficients[i]; // Calculate the conductance terms. Conductance varies with each // dimension because the gradient magnitude approximation is different // along each dimension. accum = 0.0; accum_d = 0.0; for (j = 0; j < ImageDimension; ++j) { if (j != i) { dx_aug = (it.GetPixel(m_Center + m_Stride[i] + m_Stride[j]) - it.GetPixel(m_Center + m_Stride[i] - m_Stride[j])) / 2.0f; dx_aug *= this->m_ScaleCoefficients[j]; dx_dim = (it.GetPixel(m_Center - m_Stride[i] + m_Stride[j]) - it.GetPixel(m_Center - m_Stride[i] - m_Stride[j])) / 2.0f; dx_dim *= this->m_ScaleCoefficients[j]; accum += 0.25f * itk::Math::sqr(dx[j] + dx_aug); accum_d += 0.25f * itk::Math::sqr(dx[j] + dx_dim); } } if (m_K == 0.0) { Cx = 0.0; Cxd = 0.0; } else { Cx = std::exp((itk::Math::sqr(dx_forward) + accum) / m_K); Cxd = std::exp((itk::Math::sqr(dx_backward) + accum_d) / m_K); } // Conductance modified first order derivatives. dx_forward = dx_forward * Cx; dx_backward = dx_backward * Cxd; // Conductance modified second order derivative. delta += dx_forward - dx_backward; } return static_cast(delta); } } // end namespace itk #endif