/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkImageReverseConstIterator_h #define itkImageReverseConstIterator_h #include "itkSize.h" #include "itkImageConstIterator.h" #include namespace itk { /** \class ImageReverseConstIterator * \brief Multi-dimensional image iterator. * * ImageReverseConstIterator is a templated class to represent a * multi-dimensional iterator. ImageReverseConstIterator is templated over the * dimension of the image and the data type of the image. * * ImageReverseConstIterator is a base class for all the reverse image * iterators. It provides the basic construction and comparison * operations. However, it does not provide mechanisms for moving the * iterator. A subclass of ImageReverseConstIterator must be used to move * the iterator. * * ImageReverseConstIterator is a multi-dimensional iterator, requiring * more information be specified before the iterator can be used than * conventional iterators. Whereas the std::vector::iterator from the * STL only needs to be passed a pointer to establish the iterator, * the multi-dimensional image iterator needs a pointer, the size of * the buffer, the size of the region, the start index of the buffer, * and the start index of the region. To gain access to this * information, ImageReverseConstIterator holds a reference to the image * over which it is traversing. * * ImageReverseConstIterator assumes a particular layout of the image * data. In particular, the data is arranged in a 1D array as if it * were [][][][slice][row][col] with Index[0] = col, Index[1] = row, * Index[2] = slice, etc. * * \par MORE INFORMATION * For a complete description of the ITK Image Iterators and their API, please * see the Iterators chapter in the ITK Software Guide. The ITK Software Guide * is available in print and as a free .pdf download from https://www.itk.org. * * \ingroup ImageIterators * * \sa ImageConstIterator \sa ConditionalConstIterator * \sa ConstNeighborhoodIterator \sa ConstShapedNeighborhoodIterator * \sa ConstSliceIterator \sa CorrespondenceDataStructureIterator * \sa FloodFilledFunctionConditionalConstIterator * \sa FloodFilledImageFunctionConditionalConstIterator * \sa FloodFilledImageFunctionConditionalIterator * \sa FloodFilledSpatialFunctionConditionalConstIterator * \sa FloodFilledSpatialFunctionConditionalIterator * \sa ImageConstIterator \sa ImageConstIteratorWithIndex * \sa ImageIterator \sa ImageIteratorWithIndex * \sa ImageLinearConstIteratorWithIndex \sa ImageLinearIteratorWithIndex * \sa ImageRandomConstIteratorWithIndex \sa ImageRandomIteratorWithIndex * \sa ImageRegionConstIterator \sa ImageRegionConstIteratorWithIndex * \sa ImageRegionExclusionConstIteratorWithIndex * \sa ImageRegionExclusionIteratorWithIndex * \sa ImageRegionIterator \sa ImageRegionIteratorWithIndex * \sa ImageRegionReverseConstIterator \sa ImageRegionReverseIterator * \sa ImageReverseConstIterator \sa ImageReverseIterator * \sa ImageSliceConstIteratorWithIndex \sa ImageSliceIteratorWithIndex * \sa NeighborhoodIterator \sa PathConstIterator \sa PathIterator * \sa ShapedNeighborhoodIterator \sa SliceIterator * \sa ImageConstIteratorWithIndex * \ingroup ITKCommon */ template class ITK_TEMPLATE_EXPORT ImageReverseConstIterator { public: /** Standard class type aliases. */ using Self = ImageReverseConstIterator; /** Dimension of the image the iterator walks. This constant is needed so * functions that are templated over image iterator type (as opposed to * being templated over pixel type and dimension) can have compile time * access to the dimension of the image that the iterator walks. */ static constexpr unsigned int ImageIteratorDimension = TImage::ImageDimension; /** \see LightObject::GetNameOfClass() */ itkVirtualGetNameOfClassMacro(ImageReverseConstIterator); /** Index type alias support */ using IndexType = typename TImage::IndexType; /** Size type alias support */ using SizeType = typename TImage::SizeType; /** Offset type alias support */ using OffsetType = typename TImage::OffsetType; /** Region type alias support */ using RegionType = typename TImage::RegionType; /** Image type alias support */ using ImageType = TImage; /** PixelContainer type alias support Used to refer to the container for * the pixel data. While this was already typedef'ed in the superclass * it needs to be redone here for this subclass to compile properly with gcc. */ using PixelContainer = typename TImage::PixelContainer; using PixelContainerPointer = typename PixelContainer::Pointer; /** Internal Pixel Type */ using InternalPixelType = typename TImage::InternalPixelType; /** External Pixel Type */ using PixelType = typename TImage::PixelType; /** Accessor type that convert data between internal and external * representations. */ using AccessorType = typename TImage::AccessorType; /** Functor to choose the appropriate accessor. (for Image vs VectorImage) */ using AccessorFunctorType = typename TImage::AccessorFunctorType; /** Default Constructor. Need to provide a default constructor since we * provide a copy constructor. */ ImageReverseConstIterator() : m_PixelAccessor() , m_PixelAccessorFunctor() { m_Buffer = 0; m_Offset = 0; m_BeginOffset = 0; m_EndOffset = 0; m_PixelAccessorFunctor.SetBegin(m_Buffer); } /** Default Destructor. */ virtual ~ImageReverseConstIterator() = default; /** Copy Constructor. The copy constructor is provided to make sure the * handle to the image is properly reference counted. */ ImageReverseConstIterator(const Self & it) { m_Image = it.m_Image; // copy the smart pointer m_Region = it.m_Region; m_Buffer = it.m_Buffer; m_Offset = it.m_Offset; m_BeginOffset = it.m_BeginOffset; m_EndOffset = it.m_EndOffset; m_PixelAccessor = it.m_PixelAccessor; m_PixelAccessorFunctor = it.m_PixelAccessorFunctor; m_PixelAccessorFunctor.SetBegin(m_Buffer); } /** Constructor establishes an iterator to walk a particular image and a * particular region of that image. */ ImageReverseConstIterator(const ImageType * ptr, const RegionType & region) { SizeValueType offset; m_Image = ptr; m_Buffer = m_Image->GetBufferPointer(); m_Region = region; // Compute the end offset, one pixel before the first pixel offset = m_Image->ComputeOffset(m_Region.GetIndex()); m_EndOffset = offset - 1; // Compute the begin offset, the last pixel in the region IndexType ind(m_Region.GetIndex()); SizeType size(m_Region.GetSize()); for (unsigned int i = 0; i < TImage::ImageDimension; ++i) { ind[i] += (size[i] - 1); } m_BeginOffset = m_Image->ComputeOffset(ind); m_Offset = m_BeginOffset; m_PixelAccessor = ptr->GetPixelAccessor(); m_PixelAccessorFunctor.SetPixelAccessor(m_PixelAccessor); m_PixelAccessorFunctor.SetBegin(m_Buffer); } /** Constructor that can be used to cast from an ImageConstIterator to an * ImageRegionReverseIterator. Many routines return an ImageConstIterator * but for a particular task, you may want an * ImageRegionReverseIterator. Rather than provide overloaded APIs * that return different types of Iterators, itk returns * ImageConstIterators and uses constructors to cast from an * ImageConstIterator to a ImageRegionReverseIterator. */ ImageReverseConstIterator(const ImageConstIterator & it) { m_Image = it.GetImage(); m_Region = it.GetRegion(); m_Buffer = m_Image->GetBufferPointer(); IndexType ind = it.GetIndex(); m_Offset = m_Image->ComputeOffset(ind); // Compute the end offset, one pixel before the first pixel m_EndOffset = m_Image->ComputeOffset(m_Region.GetIndex()) - 1; // Compute the begin offset, the last pixel in the region IndexType regInd(m_Region.GetIndex()); SizeType regSize(m_Region.GetSize()); for (unsigned int i = 0; i < TImage::ImageDimension; ++i) { regInd[i] += (regSize[i] - 1); } m_BeginOffset = m_Image->ComputeOffset(regInd); m_PixelAccessor = m_Image->GetPixelAccessor(); m_PixelAccessorFunctor.SetPixelAccessor(m_PixelAccessor); m_PixelAccessorFunctor.SetBegin(m_Buffer); } /** operator= is provided to make sure the handle to the image is properly * reference counted. */ Self & operator=(const Self & it) { if (this != &it) { m_Image = it.m_Image; // copy the smart pointer m_Region = it.m_Region; m_Buffer = it.m_Buffer; m_Offset = it.m_Offset; m_BeginOffset = it.m_BeginOffset; m_EndOffset = it.m_EndOffset; m_PixelAccessor = it.m_PixelAccessor; m_PixelAccessorFunctor.SetPixelAccessor(m_PixelAccessor); m_PixelAccessorFunctor.SetBegin(m_Buffer); } return *this; } /** operator= is provided to make sure the handle to the image is properly * reference counted. */ Self & operator=(const ImageConstIterator & it) { m_Image = it.GetImage(); m_Region = it.GetRegion(); m_Buffer = m_Image->GetBufferPointer(); IndexType ind = it.GetIndex(); m_Offset = m_Image->ComputeOffset(ind); // Compute the end offset, one pixel before the first pixel m_EndOffset = m_Image->ComputeOffset(m_Region.GetIndex()) - 1; // Compute the begin offset, the last pixel in the region IndexType regInd(m_Region.GetIndex()); SizeType regSize(m_Region.GetSize()); for (unsigned int i = 0; i < TImage::ImageDimension; ++i) { regInd[i] += (regSize[i] - 1); } m_BeginOffset = m_Image->ComputeOffset(regInd); m_PixelAccessor = m_Image->GetPixelAccessor(); m_PixelAccessorFunctor.SetPixelAccessor(m_PixelAccessor); m_PixelAccessorFunctor.SetBegin(m_Buffer); return *this; } /** Get the dimension (size) of the index. */ static unsigned int GetImageIteratorDimension() { return TImage::ImageDimension; } /** Comparison operator. Two iterators are the same if they "point to" the * same memory location */ bool operator==(const Self & it) const { // two iterators are the same if they "point to" the same memory location return (m_Buffer + m_Offset) == (it.m_Buffer + it.m_Offset); } ITK_UNEQUAL_OPERATOR_MEMBER_FUNCTION(Self); /** Get the index. This provides a read only reference to the index. * This causes the index to be calculated from pointer arithmetic and is * therefore an expensive operation. * \sa SetIndex */ const IndexType GetIndex() { return m_Image->ComputeIndex(m_Offset); } /** Set the index. No bounds checking is performed. * \sa GetIndex */ virtual void SetIndex(const IndexType & ind) { m_Offset = m_Image->ComputeOffset(ind); } /** Get the region that this iterator walks. ImageReverseConstIterators know the * beginning and the end of the region of the image to iterate over. */ const RegionType & GetRegion() const { return m_Region; } /** Get the pixel value */ const PixelType Get() const { return m_PixelAccessorFunctor.Get(*(m_Buffer + m_Offset)); } /** Set the pixel value */ void Set(const PixelType & value) const { this->m_PixelAccessorFunctor.Set(*(const_cast(this->m_Buffer + this->m_Offset)), value); } /** Return a const reference to the pixel * This method will provide the fastest access to pixel * data, but it will NOT support ImageAdaptors. */ const PixelType & Value() const { return *(m_Buffer + m_Offset); } /** Return a reference to the pixel * This method will provide the fastest access to pixel * data, but it will NOT support ImageAdaptors. */ const PixelType & Value() { return *(m_Buffer + m_Offset); } /** Move an iterator to the beginning of the region. "Begin" for a reverse * iterator is the last pixel in the region. */ void GoToBegin() { m_Offset = m_BeginOffset; } /** Move an iterator to the end of the region. "End" for a reverse iterator * is defined as one pixel before the first pixel in the region. */ void GoToEnd() { m_Offset = m_EndOffset; } /** Is the iterator at the beginning of the (reverse) region? "Begin" for * a reverse iterator is the last pixel in the region. */ bool IsAtBegin() const { return (m_Offset == m_BeginOffset); } /** Is the iterator at the end of the (reverse) region? "End" for a reverse * iterator is one pixel before the first pixel in the region. */ bool IsAtEnd() const { return (m_Offset == m_EndOffset); } protected: // made protected so other iterators can access typename ImageType::ConstWeakPointer m_Image{}; RegionType m_Region{}; // region to iterate over SizeValueType m_Offset{}; SizeValueType m_BeginOffset{}; // offset to last pixel in region SizeValueType m_EndOffset{}; // offset to one pixel before first pixel const InternalPixelType * m_Buffer{}; AccessorType m_PixelAccessor{}; AccessorFunctorType m_PixelAccessorFunctor{}; }; } // end namespace itk #endif