/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkInitializationBiasedParticleSwarmOptimizer_h #define itkInitializationBiasedParticleSwarmOptimizer_h #include "itkParticleSwarmOptimizerBase.h" #include "ITKOptimizersExport.h" namespace itk { /** \class InitializationBiasedParticleSwarmOptimizer * \brief Implementation of a biased/regularized Particle Swarm Optimization * (PSO) algorithm. * * This PSO algorithm was originally described in: * M. P. Wachowiak, R. Smolikova, Y. Zheng, J. M. Zurada, A. S. Elmaghraby, * "An approach to multimodal biomedical image registration utilizing particle * swarm optimization", IEEE Transactions on Evolutionary Computing, * vol. 8(3): 289-301, 2004. * * The algorithm uses a stochastic optimization approach. Optimization * is performed by maintaining a swarm (flock) of * particles that traverse the parameter space, searching for the optimal * function value. Associated with each particle are its location and speed, in * parameter space. A particle's next location is determined by its current * location, its current speed, the location of the best function value it * previously encountered, the location of the best function value the * particles in its neighborhood previously encountered and the initial position * the user specified. * * The assumption is that the user's initial parameter settings are close to the * minimum, which is often the case for registration. The initial parameter * values are incorporated into the PSO's update rules, biasing the search in * their direction. The swarms update equations are thus: * * \f$v_i(t+1) = wv_i(t) + c_1u_1(p_i-x_i(t)) + c_2u_2(p_g-x_i(t)) + * c_3u_3(x_{init} - x_i(t))\f$ * \f$x_i(t+1) = clampToBounds(x_i(t) + v_i(t+1))\f$ * * where \f$u_i\f$ are \f$~U(0,1)\f$ and \f$w,c_1,c_2, c_3\f$ are user selected * weights, and c_3 is linearly decreased per iteration so that it is in * \f$c_3=initial, 0\f$. * * Swarm initialization is performed within the user supplied parameter bounds * using a uniform distribution or a normal distribution centered on * the initial parameter values supplied by the user, \f$x_{init}\f$. The search * terminates when the maximal number of iterations has been reached or when the * change in the best value in the past \f$g\f$ generations is below a threshold * and the swarm has collapsed (i.e. particles are close to each other in * parameter space). * * \note This implementation only performs minimization. * * \ingroup Numerics Optimizers * \ingroup ITKOptimizers */ class ITKOptimizers_EXPORT InitializationBiasedParticleSwarmOptimizer : public ParticleSwarmOptimizerBase { public: ITK_DISALLOW_COPY_AND_MOVE(InitializationBiasedParticleSwarmOptimizer); /** Standard "Self" type alias. */ using Self = InitializationBiasedParticleSwarmOptimizer; using Superclass = ParticleSwarmOptimizerBase; using Pointer = SmartPointer; using ConstPointer = SmartPointer; using CoefficientType = double; /** Method for creation through the object factory. */ itkNewMacro(Self); /** \see LightObject::GetNameOfClass() */ itkOverrideGetNameOfClassMacro(InitializationBiasedParticleSwarmOptimizer); /** The Particle swarm optimizer uses the following update formula: * \f[c_3 = c_{3initial}(1.0 - IterationIndex/MaximalNumberOfIterations)\f] * \f[v_i(t+1) = w*v_i(t) + * c_1*uniform(0,1)*(p_i-x_i(t)) + * c_2*uniform(0,1)*(p_g-x_i(t)) + * c_3*uniform(0,1)*(x_{init}-x_i(t))\f] * \f[x_i(t+1) = clampToBounds(x_i(t) + v_i(t+1))\f] * where * \f$w\f$ - inertia constant * \f$c_1\f$ - personal coefficient * \f$c_2\f$ - global coefficient * \f$c_3\f$ - initial location coefficient * \f$p_i\f$ - parameters yielding the best function value obtained by this particle * \f$p_g\f$ - parameters yielding the best function value obtained by all particles * \f$x_{init}\f$ - initial parameter values provided by user */ itkSetMacro(InertiaCoefficient, CoefficientType); itkGetMacro(InertiaCoefficient, CoefficientType); itkSetMacro(PersonalCoefficient, CoefficientType); itkGetMacro(PersonalCoefficient, CoefficientType); itkSetMacro(GlobalCoefficient, CoefficientType); itkGetMacro(GlobalCoefficient, CoefficientType); itkSetMacro(InitializationCoefficient, CoefficientType); itkGetMacro(InitializationCoefficient, CoefficientType); protected: InitializationBiasedParticleSwarmOptimizer(); ~InitializationBiasedParticleSwarmOptimizer() override = default; void PrintSelf(std::ostream & os, Indent indent) const override; void UpdateSwarm() override; private: ParametersType::ValueType m_InertiaCoefficient{}; ParametersType::ValueType m_PersonalCoefficient{}; ParametersType::ValueType m_GlobalCoefficient{}; ParametersType::ValueType m_InitializationCoefficient{}; }; } // end namespace itk #endif