/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkLaplacianOperator_hxx #define itkLaplacianOperator_hxx namespace itk { template void LaplacianOperator::SetDerivativeScalings(const double * s) { for (unsigned int i = 0; i < VDimension; ++i) { m_DerivativeScalings[i] = s[i]; } } // Create the operator template void LaplacianOperator::CreateOperator() { CoefficientVector coefficients; coefficients = this->GenerateCoefficients(); this->Fill(coefficients); } // This function fills the coefficients into the corresponding neighborhood. template void LaplacianOperator::Fill(const CoefficientVector & coeff) { typename Superclass::CoefficientVector::const_iterator it; const std::slice temp_slice(0, coeff.size(), 1); typename Self::SliceIteratorType data(this, temp_slice); it = coeff.begin(); // Copy the coefficients into the neighborhood for (data = data.Begin(); data < data.End(); ++data, ++it) { *data = *it; } } template auto LaplacianOperator::GenerateCoefficients() -> CoefficientVector { unsigned int i, w; // Here we set the radius to 1's, here the // operator is 3x3 for 2D, 3x3x3 for 3D. SizeType r; r.Fill(1); this->SetRadius(r); // Create a vector of the correct size to hold the coefficients. w = this->Size(); CoefficientVector coeffP(w); // Set the coefficients double sum = 0.0; for (i = 0; i < 2 * VDimension; i += 2) { OffsetValueType stride = this->GetStride(i / 2); const double hsq = m_DerivativeScalings[i / 2] * m_DerivativeScalings[i / 2]; coeffP[w / 2 - stride] = coeffP[w / 2 + stride] = hsq; sum += 2.0 * hsq; } coeffP[w / 2] = -sum; return coeffP; } } // namespace itk #endif