/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkQuadrilateralCell_hxx #define itkQuadrilateralCell_hxx #include "itkMath.h" #include "vnl/algo/vnl_determinant.h" #include // For copy_n. namespace itk { /** * Standard CellInterface: */ template void QuadrilateralCell::MakeCopy(CellAutoPointer & cellPointer) const { cellPointer.TakeOwnership(new Self); cellPointer->SetPointIds(this->GetPointIds()); } /** * Standard CellInterface: * Get the topological dimension of this cell. */ template unsigned int QuadrilateralCell::GetDimension() const { return Self::CellDimension; } /** * Standard CellInterface: * Get the number of points required to define the cell. */ template unsigned int QuadrilateralCell::GetNumberOfPoints() const { return Self::NumberOfPoints; } /** * Standard CellInterface: * Get the number of boundary features of the given dimension. */ template auto QuadrilateralCell::GetNumberOfBoundaryFeatures(int dimension) const -> CellFeatureCount { switch (dimension) { case 0: return GetNumberOfVertices(); case 1: return GetNumberOfEdges(); default: return 0; } } /** * Standard CellInterface: * Get the boundary feature of the given dimension specified by the given * cell feature Id. * The Id can range from 0 to GetNumberOfBoundaryFeatures(dimension)-1. */ template bool QuadrilateralCell::GetBoundaryFeature(int dimension, CellFeatureIdentifier featureId, CellAutoPointer & cellPointer) { switch (dimension) { case 0: { VertexAutoPointer vertexPointer; if (this->GetVertex(featureId, vertexPointer)) { TransferAutoPointer(cellPointer, vertexPointer); return true; } break; } case 1: { EdgeAutoPointer edgePointer; if (this->GetEdge(featureId, edgePointer)) { TransferAutoPointer(cellPointer, edgePointer); return true; } break; } default: break; // just fall through and return false; } cellPointer.Reset(); return false; } /** * Standard CellInterface: * Set the point id list used by the cell. It is assumed that the given * iterator can be incremented and safely de-referenced enough times to * get all the point ids needed by the cell. */ template void QuadrilateralCell::SetPointIds(PointIdConstIterator first) { std::copy_n(first, Self::NumberOfPoints, m_PointIds.begin()); } /** * Standard CellInterface: * Set the point id list used by the cell. It is assumed that the range * of iterators [first, last) contains the correct number of points needed to * define the cell. The position *last is NOT referenced, so it can safely * be one beyond the end of an array or other container. */ template void QuadrilateralCell::SetPointIds(PointIdConstIterator first, PointIdConstIterator last) { int localId = 0; PointIdConstIterator ii(first); while (ii != last) { m_PointIds[localId++] = *ii++; } } /** * Standard CellInterface: * Set an individual point identifier in the cell. */ template void QuadrilateralCell::SetPointId(int localId, PointIdentifier ptId) { m_PointIds[localId] = ptId; } /** * Standard CellInterface: * Get a begin iterator to the list of point identifiers used by the cell. */ template auto QuadrilateralCell::PointIdsBegin() -> PointIdIterator { return &m_PointIds[0]; } /** * Standard CellInterface: * Get a const begin iterator to the list of point identifiers used * by the cell. */ template auto QuadrilateralCell::PointIdsBegin() const -> PointIdConstIterator { return &m_PointIds[0]; } /** * Standard CellInterface: * Get an end iterator to the list of point identifiers used by the cell. */ template auto QuadrilateralCell::PointIdsEnd() -> PointIdIterator { return &m_PointIds[Self::NumberOfPoints - 1] + 1; } /** * Standard CellInterface: * Get a const end iterator to the list of point identifiers used * by the cell. */ template auto QuadrilateralCell::PointIdsEnd() const -> PointIdConstIterator { return &m_PointIds[Self::NumberOfPoints - 1] + 1; } /** * Quadrilateral-specific: * Get the number of vertices defining the quadrilateral. */ template auto QuadrilateralCell::GetNumberOfVertices() const -> CellFeatureCount { return NumberOfVertices; } /** * Quadrilateral-specific: * Get the number of edges defined for the quadrilateral. */ template auto QuadrilateralCell::GetNumberOfEdges() const -> CellFeatureCount { return Self::NumberOfEdges; } /** * Quadrilateral-specific: * Get the vertex specified by the given cell feature Id. * The Id can range from 0 to GetNumberOfVertices()-1. */ template bool QuadrilateralCell::GetVertex(CellFeatureIdentifier vertexId, VertexAutoPointer & vertexPointer) { auto * vert = new VertexType; vert->SetPointId(0, m_PointIds[vertexId]); vertexPointer.TakeOwnership(vert); return true; } /** * Quadrilateral-specific: * Get the edge specified by the given cell feature Id. * The Id can range from 0 to GetNumberOfEdges()-1. */ template bool QuadrilateralCell::GetEdge(CellFeatureIdentifier edgeId, EdgeAutoPointer & edgePointer) { auto * edge = new EdgeType; for (unsigned int i = 0; i < EdgeType::NumberOfPoints; ++i) { edge->SetPointId(i, m_PointIds[m_Edges[edgeId][i]]); } edgePointer.TakeOwnership(edge); return true; } /** Evaluate the position inside the cell */ template bool QuadrilateralCell::EvaluatePosition(CoordRepType * x, PointsContainer * points, CoordRepType * closestPoint, CoordRepType pcoord[CellDimension], double * dist2, InterpolationWeightType * weight) { static constexpr int ITK_QUAD_MAX_ITERATION = 10; static constexpr double ITK_QUAD_CONVERGED = 1.e-03; static constexpr double ITK_DIVERGED = 1.e6; int iteration, converged; double params[CellDimension]; double fcol[CellDimension]; double rcol[CellDimension]; double scol[CellDimension]; double d; PointType pt; CoordRepType derivs[NumberOfDerivatives]; InterpolationWeightType weights[NumberOfPoints]; // set initial position for Newton's method int subId = 0; CoordRepType pcoords[CellDimension]; pcoords[0] = pcoords[1] = params[0] = params[1] = 0.5; // NOTE: Point x is here assumed to lie on the plane of Quad. Otherwise, (FIXME) // - Get normal for quadrilateral, using its 3 corners // - Project point x onto Quad plane using this normal // See vtkQuad for this: ComputeNormal (this, pt1, pt2, pt3, n); vtkPlane::ProjectPoint(x,pt1,n,cp); // enter iteration loop for (iteration = converged = 0; !converged && (iteration < ITK_QUAD_MAX_ITERATION); ++iteration) { // calculate element interpolation functions and derivatives this->InterpolationFunctions(pcoords, weights); this->InterpolationDerivs(pcoords, derivs); // calculate newton functions for (unsigned int i = 0; i < CellDimension; ++i) { fcol[i] = rcol[i] = scol[i] = 0.0; } for (unsigned int i = 0; i < NumberOfPoints; ++i) { pt = points->GetElement(m_PointIds[i]); // using the projection normal n, one can choose which 2 axes to use out of 3 // any 2 should work, so (not having n) we use [x,y] (also assuming 2D use of QuadCell) // if we compute n, one can use the closest two indices as in vtkQuad for (unsigned int j = 0; j < CellDimension; ++j) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i + NumberOfPoints]; } } for (unsigned int i = 0; i < CellDimension; ++i) { fcol[i] -= x[i]; } // compute determinants and generate improvements vnl_matrix_fixed mat; for (unsigned int i = 0; i < CellDimension; ++i) { mat.put(0, i, rcol[i]); mat.put(1, i, scol[i]); } d = vnl_determinant(mat); // d=vtkMath::Determinant2x2(rcol,scol); if (itk::Math::abs(d) < 1.e-20) { return false; } vnl_matrix_fixed mat1; for (unsigned int i = 0; i < CellDimension; ++i) { mat1.put(0, i, fcol[i]); mat1.put(1, i, scol[i]); } vnl_matrix_fixed mat2; for (unsigned int i = 0; i < CellDimension; ++i) { mat2.put(0, i, rcol[i]); mat2.put(1, i, fcol[i]); } pcoords[0] = params[0] - vnl_determinant(mat1) / d; pcoords[1] = params[1] - vnl_determinant(mat2) / d; if (pcoord) { pcoord[0] = pcoords[0]; pcoord[1] = pcoords[1]; } // check for convergence if (((itk::Math::abs(pcoords[0] - params[0])) < ITK_QUAD_CONVERGED) && ((itk::Math::abs(pcoords[1] - params[1])) < ITK_QUAD_CONVERGED)) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((itk::Math::abs(pcoords[0]) > ITK_DIVERGED) || (itk::Math::abs(pcoords[1]) > ITK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if (!converged) { return false; } this->InterpolationFunctions(pcoords, weights); if (weight) { for (unsigned int i = 0; i < NumberOfPoints; ++i) { weight[i] = weights[i]; } } if (pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; *dist2 = 0.0; // inside quadrilateral } return true; } else { CoordRepType pc[CellDimension], w[NumberOfPoints]; if (closestPoint) { for (unsigned int i = 0; i < CellDimension; ++i) // only approximate ?? { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, points, pc, closestPoint, (InterpolationWeightType *)w); *dist2 = 0; for (unsigned int i = 0; i < CellDimension; ++i) { *dist2 += (closestPoint[i] - x[i]) * (closestPoint[i] - x[i]); } } return false; } } /** Compute iso-parametric interpolation functions */ template void QuadrilateralCell::InterpolationFunctions(const CoordRepType pointCoords[CellDimension], InterpolationWeightType weights[NumberOfPoints]) { const double rm = 1. - pointCoords[0]; const double sm = 1. - pointCoords[1]; weights[0] = rm * sm; weights[1] = pointCoords[0] * sm; weights[2] = pointCoords[0] * pointCoords[1]; weights[3] = rm * pointCoords[1]; } /** Compute iso-parametric interpolation functions */ template void QuadrilateralCell::InterpolationDerivs(const CoordRepType pointCoords[CellDimension], CoordRepType derivs[NumberOfDerivatives]) { const double rm = 1. - pointCoords[0]; const double sm = 1. - pointCoords[1]; // r-derivatives derivs[0] = -sm; derivs[1] = sm; derivs[2] = pointCoords[1]; derivs[3] = -pointCoords[1]; // s-derivatives derivs[4] = -rm; derivs[5] = -pointCoords[0]; derivs[6] = pointCoords[0]; derivs[7] = rm; } /** Evaluate the location inside the cell */ template void QuadrilateralCell::EvaluateLocation(int & itkNotUsed(subId), const PointsContainer * points, const CoordRepType pointCoords[PointDimension], CoordRepType x[PointDimension], InterpolationWeightType * weights) { this->InterpolationFunctions(pointCoords, weights); for (unsigned int ii = 0; ii < PointDimension; ++ii) { x[ii] = CoordRepType{}; } for (unsigned int ii = 0; ii < NumberOfPoints; ++ii) { const PointType & point = points->GetElement(m_PointIds[ii]); for (unsigned int jj = 0; jj < PointDimension; ++jj) { x[jj] += point[jj] * weights[ii]; } } } } // end namespace itk #endif