/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkShapePriorSegmentationLevelSetFunction_hxx #define itkShapePriorSegmentationLevelSetFunction_hxx #include "itkMath.h" namespace itk { template ShapePriorSegmentationLevelSetFunction::ShapePriorSegmentationLevelSetFunction() { m_ShapeFunction = nullptr; m_ShapePriorWeight = ScalarValueType{}; } template void ShapePriorSegmentationLevelSetFunction::PrintSelf(std::ostream & os, Indent indent) const { Superclass::PrintSelf(os, indent); itkPrintSelfObjectMacro(ShapeFunction); os << indent << "ShapePriorWeight: " << static_cast::PrintType>(m_ShapePriorWeight) << std::endl; } template auto ShapePriorSegmentationLevelSetFunction::ComputeUpdate( const NeighborhoodType & neighborhood, void * gd, const FloatOffsetType & offset) -> PixelType { // Compute the generic level set update using superclass PixelType value = this->Superclass::ComputeUpdate(neighborhood, gd, offset); // Add the shape prior term if (m_ShapeFunction && Math::NotExactlyEquals(m_ShapePriorWeight, ScalarValueType{})) { IndexType idx = neighborhood.GetIndex(); ContinuousIndex cdx; for (unsigned int i = 0; i < ImageDimension; ++i) { cdx[i] = static_cast(idx[i]) - offset[i]; } typename ShapeFunctionType::PointType point; this->GetFeatureImage()->TransformContinuousIndexToPhysicalPoint(cdx, point); ScalarValueType shape_term = m_ShapePriorWeight * (m_ShapeFunction->Evaluate(point) - neighborhood.GetCenterPixel()); value += shape_term; // collect max change to be used for calculating the time step auto * globalData = (ShapePriorGlobalDataStruct *)gd; globalData->m_MaxShapePriorChange = std::max(globalData->m_MaxShapePriorChange, itk::Math::abs(shape_term)); } return value; } template auto ShapePriorSegmentationLevelSetFunction::ComputeGlobalTimeStep(void * gd) const -> TimeStepType { TimeStepType dt; auto * d = (ShapePriorGlobalDataStruct *)gd; d->m_MaxAdvectionChange += d->m_MaxPropagationChange + d->m_MaxShapePriorChange; if (itk::Math::abs(d->m_MaxCurvatureChange) > 0.0) { if (d->m_MaxAdvectionChange > 0.0) { dt = std::min((this->m_WaveDT / d->m_MaxAdvectionChange), (this->m_DT / d->m_MaxCurvatureChange)); } else { dt = this->m_DT / d->m_MaxCurvatureChange; } } else { if (d->m_MaxAdvectionChange > 0.0) { dt = this->m_WaveDT / d->m_MaxAdvectionChange; } else { dt = 0.0; } } double maxScaleCoefficient = 0.0; for (unsigned int i = 0; i < ImageDimension; ++i) { maxScaleCoefficient = std::max(this->m_ScaleCoefficients[i], maxScaleCoefficient); } dt /= maxScaleCoefficient; // reset the values d->m_MaxAdvectionChange = 0; d->m_MaxPropagationChange = 0; d->m_MaxCurvatureChange = 0; d->m_MaxShapePriorChange = 0; return dt; } } // end namespace itk #endif