/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkSimpleMultiResolutionImageRegistrationUI_h #define itkSimpleMultiResolutionImageRegistrationUI_h #include "itkMultiResolutionImageRegistrationMethod.h" #include "itkCommand.h" #include "itkArray.h" #include "itkGradientDescentOptimizer.h" // The following classes are examples of simple user interface // that controls a MultiResolutionImageRegistrationMethod process template class SimpleMultiResolutionImageRegistrationUI { public: SimpleMultiResolutionImageRegistrationUI(TRegistrator * ptr) : m_Tag(0) { if (!ptr) { return; } m_Registrator = ptr; typename itk::SimpleMemberCommand::Pointer iterationCommand = itk::SimpleMemberCommand::New(); iterationCommand->SetCallbackFunction(this, &SimpleMultiResolutionImageRegistrationUI::StartNewLevel); m_Tag = m_Registrator->AddObserver(itk::IterationEvent(), iterationCommand); } virtual ~SimpleMultiResolutionImageRegistrationUI() { if (m_Registrator) { m_Registrator->RemoveObserver(m_Tag); } } virtual void StartNewLevel() { std::cout << "--- Starting level " << m_Registrator->GetCurrentLevel() << std::endl; } protected: typename TRegistrator::Pointer m_Registrator{}; unsigned long m_Tag{}; }; // This UI supports registration methods with gradient descent // type optimizers. // This UI allows the number of iterations and learning rate // to be changes at each resolution level. template class ITK_TEMPLATE_EXPORT SimpleMultiResolutionImageRegistrationUI2 : public SimpleMultiResolutionImageRegistrationUI { public: using Superclass = SimpleMultiResolutionImageRegistrationUI< itk::MultiResolutionImageRegistrationMethod, itk::Image>>; SimpleMultiResolutionImageRegistrationUI2(TRegistration * ptr) : Superclass(ptr){}; ~SimpleMultiResolutionImageRegistrationUI2() override = default; void SetNumberOfIterations(itk::Array & iter) { m_NumberOfIterations = iter; } void SetLearningRates(itk::Array & rates) { m_LearningRates = rates; } void StartNewLevel() override { // call the superclass's implementation this->Superclass::StartNewLevel(); if (!this->m_Registrator) { return; } // Try to cast the optimizer to a gradient descent type, // return if casting didn't work. itk::GradientDescentOptimizer::Pointer optimizer = dynamic_cast(this->m_Registrator->GetModifiableOptimizer()); if (!optimizer) { return; } unsigned int level = this->m_Registrator->GetCurrentLevel(); if (m_NumberOfIterations.Size() >= level + 1) { optimizer->SetNumberOfIterations(m_NumberOfIterations[level]); } if (m_LearningRates.Size() >= level + 1) { optimizer->SetLearningRate(m_LearningRates[level]); } std::cout << " No. Iterations: " << optimizer->GetNumberOfIterations() << " Learning rate: " << optimizer->GetLearningRate() << std::endl; } private: itk::Array m_NumberOfIterations{}; itk::Array m_LearningRates{}; }; #endif