/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkSingleValuedVnlCostFunctionAdaptor_h #define itkSingleValuedVnlCostFunctionAdaptor_h #include "itkSingleValuedCostFunction.h" #include "vnl/vnl_cost_function.h" #include "ITKOptimizersExport.h" namespace itk { /** \class SingleValuedVnlCostFunctionAdaptor * \brief This class is an Adaptor that allows to pass * itk::SingleValuedCostFunctions to vnl_optimizers expecting * a vnl_cost_function. * * This class returns a single valued. * * \ingroup Numerics Optimizers * \ingroup ITKOptimizers */ class ITKOptimizers_EXPORT SingleValuedVnlCostFunctionAdaptor : public vnl_cost_function { public: /** InternalParametersType type alias. */ using InternalParametersType = vnl_vector; /** InternalMeasureType type alias. */ using InternalMeasureType = double; /** InternalGradientType type alias. */ using InternalDerivativeType = vnl_vector; /** Parameters of the SingleValuedCostFunction */ using ParametersType = SingleValuedCostFunction::ParametersType; /** Derivatives of the SingleValuedCostFunction */ using DerivativeType = SingleValuedCostFunction::DerivativeType; /** Type of the SingleValuedCostFunction value */ using MeasureType = SingleValuedCostFunction::MeasureType; /** Scales type alias */ using ScalesType = Array; /** Constructor with size */ SingleValuedVnlCostFunctionAdaptor(unsigned int spaceDimension); /** Set the CostFunction deriving from SingleValuedCostFunction */ void SetCostFunction(SingleValuedCostFunction * costFunction) { m_CostFunction = costFunction; } /** Get the CostFunction deriving from SingleValuedCostFunction */ const SingleValuedCostFunction * GetCostFunction() const { return m_CostFunction; } /** Delegate computation of the value to the CostFunction. */ InternalMeasureType f(const InternalParametersType & inparameters) override; /** Delegate computation of the gradient to the costFunction. */ void gradf(const InternalParametersType & inparameters, InternalDerivativeType & gradient) override; /** Delegate computation of value and gradient to the costFunction. */ void compute(const InternalParametersType & x, InternalMeasureType * fun, InternalDerivativeType * g) override; /** Convert external derivative measures into internal type */ void ConvertExternalToInternalGradient(const DerivativeType & input, InternalDerivativeType & output) const; /** Set current parameters scaling. */ void SetScales(const ScalesType & scales); /** Set/Get Negate cost function. The purpose of this boolean flag is to make * possible to take certain VNL optimizers that are only minimizers, and use * them for maximizing functions. When the boolean flag is set to true, the * values returned by GetValue in the internal ITK cost function will be * multiplied by -1 before returning it in the f() function. Similar * operations will be done for the gradf() and compute() methods. When the * boolean flag is set to false, then the values returned by the ITK cost * function will be passed unchanged to the VNL optimizers. */ void SetNegateCostFunction(bool flag); bool GetNegateCostFunction() const; void NegateCostFunctionOn() { m_NegateCostFunction = true; } void NegateCostFunctionOff() { m_NegateCostFunction = false; } /** This AddObserver method allows to simulate that this class derives from * an itkObject for the purpose of reporting iteration events. The goal of * this method is to allow ITK-vnl optimizer adaptors to get iteration events * despite the fact that VNL does not provide callbacks. */ unsigned long AddObserver(const EventObject & event, Command *) const; /** Return the value of the last evaluation to the value of the cost function. * Note that this method DOES NOT triggers a computation of the function or * the derivatives, it only returns previous values. Therefore the values here * are only valid after you invoke the f() or gradf() methods. */ const MeasureType & GetCachedValue() const; const DerivativeType & GetCachedDerivative() const; const ParametersType & GetCachedCurrentParameters() const; protected: /** This method is intended to be called by the derived classes in order to * notify of an iteration event to any Command/Observers */ void ReportIteration(const EventObject & event) const; private: /** Get current parameters scaling. */ itkGetConstReferenceMacro(InverseScales, ScalesType); SingleValuedCostFunction::Pointer m_CostFunction{}; bool m_ScalesInitialized{}; ScalesType m_InverseScales{}; bool m_NegateCostFunction{}; Object::Pointer m_Reporter{}; mutable MeasureType m_CachedValue{}; mutable DerivativeType m_CachedDerivative{}; mutable ParametersType m_CachedCurrentParameters{}; }; // end of Class CostFunction } // end namespace itk #endif