/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkUniformRandomSpatialNeighborSubsampler_h #define itkUniformRandomSpatialNeighborSubsampler_h #include "itkSpatialNeighborSubsampler.h" #include "itkMersenneTwisterRandomVariateGenerator.h" namespace itk { namespace Statistics { /** * \class UniformRandomSpatialNeighborSubsampler * \brief A subsampler that uniformly randomly selects points * within the specified radius of the query point. * * This class derives from SpatialNeighborSubsampler and * randomly selects points according to a uniform distribution * within the Radius given by SetRadius(radius) * as long as that point is also within the RegionConstraint. * * This class assumes that the instance identifiers in the input * sample correspond to the result of ComputeOffset() of the index * of the corresponding point in the image region. * * \sa SubsamplerBase, RegionConstrainedSubsampler * \sa SpatialNeighborSubsampler * \sa GaussianRandomSpatialNeighborSubsampler * \ingroup ITKStatistics */ template class ITK_TEMPLATE_EXPORT UniformRandomSpatialNeighborSubsampler : public SpatialNeighborSubsampler { public: ITK_DISALLOW_COPY_AND_MOVE(UniformRandomSpatialNeighborSubsampler); /** Standard class type aliases */ using Self = UniformRandomSpatialNeighborSubsampler; using Superclass = SpatialNeighborSubsampler; using Baseclass = typename Superclass::Baseclass; using Pointer = SmartPointer; using ConstPointer = SmartPointer; /** \see LightObject::GetNameOfClass() */ itkOverrideGetNameOfClassMacro(UniformRandomSpatialNeighborSubsampler); /** Method for creation through the object factory. */ itkNewMacro(Self); /** type alias alias for the source data container */ using typename Superclass::SampleType; using typename Superclass::SampleConstPointer; using typename Superclass::MeasurementVectorType; using typename Superclass::InstanceIdentifier; using typename Superclass::SubsampleType; using typename Superclass::SubsamplePointer; using typename Superclass::SubsampleConstIterator; using typename Superclass::InstanceIdentifierHolder; using SeedType = typename Baseclass::SeedType; using SearchSizeType = unsigned long; using RandomIntType = unsigned int; /** type alias related to image region */ using typename Superclass::RadiusType; using typename Superclass::RegionType; using typename Superclass::IndexType; using typename Superclass::IndexValueType; using typename Superclass::SizeType; using typename Superclass::ImageHelperType; /** type alias related to random variate generator */ using RandomGeneratorType = Statistics::MersenneTwisterRandomVariateGenerator; void SetSeed(const SeedType seed) override { Superclass::SetSeed(seed); this->m_RandomNumberGenerator->SetSeed(this->m_Seed); } virtual void SetUseClockForSeed(const bool & useClock) { if (useClock != this->m_UseClockForSeed) { this->m_UseClockForSeed = useClock; if (this->m_UseClockForSeed) { this->m_RandomNumberGenerator->SetSeed(); } this->Modified(); } } itkBooleanMacro(UseClockForSeed); itkGetConstMacro(UseClockForSeed, bool); virtual void SetNumberOfResultsRequested(const SearchSizeType & numberRequested) { itkDebugMacro("setting NumberOfResultsRequested to " << numberRequested); if (this->m_RequestMaximumNumberOfResults || this->m_NumberOfResultsRequested != numberRequested) { this->m_NumberOfResultsRequested = numberRequested; this->m_RequestMaximumNumberOfResults = false; this->Modified(); } } itkGetConstMacro(NumberOfResultsRequested, SearchSizeType); /** Main Search method that MUST be implemented by each subclass * The Search method will find all points similar to query and return * them as a Subsample. The definition of similar will be subclass- * specific. And could mean spatial similarity or feature similarity * etc. */ void Search(const InstanceIdentifier & query, SubsamplePointer & results) override; protected: /** * Clone the current subsampler. * This does a complete copy of the subsampler state * to the new subsampler */ typename LightObject::Pointer InternalClone() const override; UniformRandomSpatialNeighborSubsampler(); ~UniformRandomSpatialNeighborSubsampler() override = default; void PrintSelf(std::ostream & os, Indent indent) const override; /** method to randomly generate an integer in the closed range * [lowerBound, upperBound] * using a uniform sampling selection method. * override this method to do gaussian selection */ virtual RandomIntType GetIntegerVariate(RandomIntType lowerBound, RandomIntType upperBound, RandomIntType itkNotUsed(mean)); SearchSizeType m_NumberOfResultsRequested{}; RandomGeneratorType::Pointer m_RandomNumberGenerator{}; bool m_UseClockForSeed{}; }; // end of class UniformRandomSpatialNeighborSubsampler } // end of namespace Statistics } // end of namespace itk #ifndef ITK_MANUAL_INSTANTIATION # include "itkUniformRandomSpatialNeighborSubsampler.hxx" #endif #endif