/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkVectorCurvatureNDAnisotropicDiffusionFunction_hxx #define itkVectorCurvatureNDAnisotropicDiffusionFunction_hxx namespace itk { template double VectorCurvatureNDAnisotropicDiffusionFunction::m_MIN_NORM = 1.0e-10; template VectorCurvatureNDAnisotropicDiffusionFunction::VectorCurvatureNDAnisotropicDiffusionFunction() { unsigned int i, j; RadiusType r; for (i = 0; i < ImageDimension; ++i) { r[i] = 1; } this->SetRadius(r); // Dummy neighborhood used to set up the slices. Neighborhood it; it.SetRadius(r); // Slice the neighborhood m_Center = it.Size() / 2; for (i = 0; i < ImageDimension; ++i) { m_Stride[i] = it.GetStride(i); } for (i = 0; i < ImageDimension; ++i) { x_slice[i] = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]); } for (i = 0; i < ImageDimension; ++i) { for (j = 0; j < ImageDimension; ++j) { // For taking derivatives in the i direction that are offset one // pixel in the j direction. xa_slice[i][j] = std::slice((m_Center + m_Stride[j]) - m_Stride[i], 3, m_Stride[i]); xd_slice[i][j] = std::slice((m_Center - m_Stride[j]) - m_Stride[i], 3, m_Stride[i]); } } // Allocate the derivative operator. m_DerivativeOperator.SetDirection(0); // Not relevant, we'll apply in a slice-based // fashion m_DerivativeOperator.SetOrder(1); m_DerivativeOperator.CreateDirectional(); } template auto VectorCurvatureNDAnisotropicDiffusionFunction::ComputeUpdate(const NeighborhoodType & it, void *, const FloatOffsetType &) -> PixelType { unsigned int i, j, k; double speed; double dx_forward_Cn[ImageDimension][VectorDimension]; double dx_backward_Cn[ImageDimension][VectorDimension]; double propagation_gradient; double grad_mag_sq[VectorDimension]; double grad_mag_sq_d[VectorDimension]; double grad_mag[VectorDimension]; double grad_mag_d[VectorDimension]; double Cx[ImageDimension]; double Cxd[ImageDimension]; const ScalarValueType ScalarValueTypeZero{}; PixelType dx_forward[ImageDimension]; PixelType dx_backward[ImageDimension]; PixelType dx[ImageDimension]; PixelType dx_aug; PixelType dx_dim; PixelType ans; // Calculate the partial derivatives for each dimension for (i = 0; i < ImageDimension; ++i) { // "Half" derivatives dx_forward[i] = it.GetPixel(m_Center + m_Stride[i]) - it.GetPixel(m_Center); dx_forward[i] = dx_forward[i] * this->m_ScaleCoefficients[i]; dx_backward[i] = it.GetPixel(m_Center) - it.GetPixel(m_Center - m_Stride[i]); dx_backward[i] = dx_backward[i] * this->m_ScaleCoefficients[i]; // Centralized differences dx[i] = m_InnerProduct(x_slice[i], it, m_DerivativeOperator); dx[i] = dx[i] * this->m_ScaleCoefficients[i]; } for (k = 0; k < VectorDimension; ++k) { grad_mag_sq[k] = 0.0; grad_mag_sq_d[k] = 0.0; for (i = 0; i < ImageDimension; ++i) { // Gradient magnitude approximations grad_mag_sq[k] += dx_forward[i][k] * dx_forward[i][k]; grad_mag_sq_d[k] += dx_backward[i][k] * dx_backward[i][k]; for (j = 0; j < ImageDimension; ++j) { if (j != i) { dx_aug = m_InnerProduct(xa_slice[j][i], it, m_DerivativeOperator); dx_aug = dx_aug * this->m_ScaleCoefficients[j]; dx_dim = m_InnerProduct(xd_slice[j][i], it, m_DerivativeOperator); dx_dim = dx_dim * this->m_ScaleCoefficients[j]; grad_mag_sq[k] += 0.25f * (dx[j][k] + dx_aug[k]) * (dx[j][k] + dx_aug[k]); grad_mag_sq_d[k] += 0.25f * (dx[j][k] + dx_dim[k]) * (dx[j][k] + dx_dim[k]); } } } grad_mag[k] = std::sqrt(m_MIN_NORM + grad_mag_sq[k]); grad_mag_d[k] = std::sqrt(m_MIN_NORM + grad_mag_sq_d[k]); // this grad mag should depend only on the current k for (i = 0; i < ImageDimension; ++i) { dx_forward_Cn[i][k] = dx_forward[i][k] / grad_mag[k]; dx_backward_Cn[i][k] = dx_backward[i][k] / grad_mag_d[k]; } } double grad_mag_sq_tmp = 0.0; double grad_mag_sq_d_tmp = 0.0; for (k = 0; k < VectorDimension; ++k) { grad_mag_sq_tmp += grad_mag_sq[k]; grad_mag_sq_d_tmp += grad_mag_sq_d[k]; } // this grad mag should depend on the sum over k's // Conductance Terms for (i = 0; i < ImageDimension; ++i) { if (m_K == 0.0) { Cx[i] = 0.0; Cxd[i] = 0.0; } else { Cx[i] = std::exp(grad_mag_sq_tmp / m_K); Cxd[i] = std::exp(grad_mag_sq_d_tmp / m_K); } } for (k = 0; k < VectorDimension; ++k) { // First order normalized finite-difference conductance products speed = 0.0; for (i = 0; i < ImageDimension; ++i) { dx_forward_Cn[i][k] *= Cx[i]; dx_backward_Cn[i][k] *= Cxd[i]; // Second order conductance-modified curvature speed += (dx_forward_Cn[i][k] - dx_backward_Cn[i][k]); } // "Upwind" gradient magnitude term propagation_gradient = 0.0; if (speed > 0.0) { for (i = 0; i < ImageDimension; ++i) { propagation_gradient += itk::Math::sqr(std::min(dx_backward[i][k], ScalarValueTypeZero)) + itk::Math::sqr(std::max(dx_forward[i][k], ScalarValueTypeZero)); } } else { for (i = 0; i < ImageDimension; ++i) { propagation_gradient += itk::Math::sqr(std::max(dx_backward[i][k], ScalarValueTypeZero)) + itk::Math::sqr(std::min(dx_forward[i][k], ScalarValueTypeZero)); } } ans[k] = std::sqrt(propagation_gradient) * speed; } return ans; } } // end namespace itk #endif