/*========================================================================= Program: Visualization Toolkit Module: vtkTriQuadraticHexahedron.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkTriQuadraticHexahedron * @brief cell represents a parabolic, 27-node isoparametric hexahedron * * vtkTriQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to * represent a three-dimensional, 27-node isoparametric triquadratic * hexahedron. The interpolation is the standard finite element, triquadratic * isoparametric shape function. The cell includes 8 edge nodes, 12 mid-edge nodes, * 6 mid-face nodes and one mid-volume node. The ordering of the 27 points defining the * cell is point ids (0-7,8-19, 20-25, 26) * where point ids 0-7 are the eight corner vertices of the cube; followed by * twelve midedge nodes (8-19); followed by 6 mid-face nodes (20-25) and the last node (26) * is the mid-volume node. Note that these midedge nodes correspond lie * on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7), * (7,4), (0,4), (1,5), (2,6), (3,7). The mid-surface nodes lies on the faces * defined by (first edge nodes id's, than mid-edge nodes id's): * (0,1,5,4;8,17,12,16), (1,2,6,5;9,18,13,17), (2,3,7,6,10,19,14,18), * (3,0,4,7;11,16,15,19), (0,1,2,3;8,9,10,11), (4,5,6,7;12,13,14,15). * The last point lies in the center of the cell (0,1,2,3,4,5,6,7). * * \verbatim * * top * 7--14--6 * | | * 15 25 13 * | | * 4--12--5 * * middle * 19--23--18 * | | * 20 26 21 * | | * 16--22--17 * * bottom * 3--10--2 * | | * 11 24 9 * | | * 0-- 8--1 * * \endverbatim * * * @sa * vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra * vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge * vtkBiQuadraticQuad * * @par Thanks: * Thanks to Soeren Gebbert who developed this class and * integrated it into VTK 5.0. */ #ifndef vtkTriQuadraticHexahedron_h #define vtkTriQuadraticHexahedron_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkNonLinearCell.h" class vtkQuadraticEdge; class vtkBiQuadraticQuad; class vtkHexahedron; class vtkDoubleArray; class VTKCOMMONDATAMODEL_EXPORT vtkTriQuadraticHexahedron : public vtkNonLinearCell { public: static vtkTriQuadraticHexahedron* New(); vtkTypeMacro(vtkTriQuadraticHexahedron, vtkNonLinearCell); void PrintSelf(ostream& os, vtkIndent indent) override; ///@{ /** * Implement the vtkCell API. See the vtkCell API for descriptions * of these methods. */ int GetCellType() override { return VTK_TRIQUADRATIC_HEXAHEDRON; } int GetCellDimension() override { return 3; } int GetNumberOfEdges() override { return 12; } int GetNumberOfFaces() override { return 6; } vtkCell* GetEdge(int) override; vtkCell* GetFace(int) override; ///@} int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override; void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override; int EvaluatePosition(const double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double* weights) override; void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override; int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override; void Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) override; double* GetParametricCoords() override; /** * Clip this triquadratic hexahedron using scalar value provided. Like * contouring, except that it cuts the hex to produce linear * tetrahedron. */ void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) override; /** * Line-edge intersection. Intersection has to occur within [0,1] parametric * coordinates and with specified tolerance. */ int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; static void InterpolationFunctions(const double pcoords[3], double weights[27]); static void InterpolationDerivs(const double pcoords[3], double derivs[81]); ///@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(const double pcoords[3], double weights[27]) override { vtkTriQuadraticHexahedron::InterpolationFunctions(pcoords, weights); } void InterpolateDerivs(const double pcoords[3], double derivs[81]) override { vtkTriQuadraticHexahedron::InterpolationDerivs(pcoords, derivs); } ///@} ///@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. * * @note The return type changed. It used to be int*, it is now const vtkIdType*. * This is so ids are unified between vtkCell and vtkPoints. */ static const vtkIdType* GetEdgeArray(vtkIdType edgeId); static const vtkIdType* GetFaceArray(vtkIdType faceId); ///@} /** * Given parametric coordinates compute inverse Jacobian transformation * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation * function derivatives. */ void JacobianInverse(const double pcoords[3], double** inverse, double derivs[81]); protected: vtkTriQuadraticHexahedron(); ~vtkTriQuadraticHexahedron() override; vtkQuadraticEdge* Edge; vtkBiQuadraticQuad* Face; vtkHexahedron* Hex; vtkDoubleArray* Scalars; private: vtkTriQuadraticHexahedron(const vtkTriQuadraticHexahedron&) = delete; void operator=(const vtkTriQuadraticHexahedron&) = delete; }; #endif