/*========================================================================= Program: Visualization Toolkit Module: vtkParametricKlein.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkParametricKlein * @brief Generates a "classical" representation of a Klein bottle. * * vtkParametricKlein generates a "classical" representation of a Klein * bottle. A Klein bottle is a closed surface with no interior and only one * surface. It is unrealisable in 3 dimensions without intersecting * surfaces. It can be * realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4\f$ given by: * * - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2))\f$ * * The classical representation of the immersion in \f$R^3\f$ is returned by this function. * * * For further information about this surface, please consult the * technical description "Parametric surfaces" in http://www.vtk.org/publications * in the "VTK Technical Documents" section in the VTk.org web pages. * * @par Thanks: * Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the * class. * */ #ifndef vtkParametricKlein_h #define vtkParametricKlein_h #include "vtkCommonComputationalGeometryModule.h" // For export macro #include "vtkParametricFunction.h" class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricKlein : public vtkParametricFunction { public: vtkTypeMacro(vtkParametricKlein, vtkParametricFunction); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Construct a Klein Bottle with the following parameters: * MinimumU = 0, MaximumU = 2*Pi, * MinimumV = -Pi, MaximumV = Pi, * JoinU = 0, JoinV = 1, * TwistU = 0, TwistV = 0, * ClockwiseOrdering = 0, * DerivativesAvailable = 1, */ static vtkParametricKlein *New(); //! Initialise the parameters for the Klein bottle /** * Return the parametric dimension of the class. */ int GetDimension() override {return 2;} /** * A Klein bottle. * This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it * as Pt. It also returns the partial derivatives Du and Dv. * \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . * Then the normal is \f$N = Du X Dv\f$ . */ void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; /** * Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uvw are the parameters with Pt being the the cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Duvw are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. */ double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; protected: vtkParametricKlein(); ~vtkParametricKlein() override; private: vtkParametricKlein(const vtkParametricKlein&) = delete; void operator=(const vtkParametricKlein&) = delete; }; #endif