/*========================================================================= Program: Visualization Toolkit Module: vtkParametricKuen.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkParametricKuen.h" #include "vtkObjectFactory.h" #include "vtkMath.h" #include vtkStandardNewMacro(vtkParametricKuen); //----------------------------------------------------------------------------// vtkParametricKuen::vtkParametricKuen() { // Preset triangulation parameters this->MinimumU = -4.5; this->MaximumU = 4.5; this->MinimumV = 0.0; this->MaximumV = vtkMath::Pi(); this->JoinU = 0; this->JoinV = 0; this->TwistU = 0; this->TwistV = 0; this->ClockwiseOrdering = 0; this->DerivativesAvailable = 1; this->DeltaV0 = 0.05; } //----------------------------------------------------------------------------// vtkParametricKuen::~vtkParametricKuen() { } //----------------------------------------------------------------------------// void vtkParametricKuen::Evaluate(double uvw[3], double Pt[3], double Duvw[9]) { // Copy the parameters out of the vector, for the sake of convenience. double u = uvw[0]; double v = uvw[1]; // This is needed to prevent Pt[2] going to -inf. if (v == 0) { v = this->DeltaV0; } // We're only going to need the u and v partial derivatives. // The w partial derivatives are not needed. double *Du = Duvw; double *Dv = Duvw + 3; // Instead of a bunch of calls to the trig library, // just call it once and store the results. double cosu = cos(u); double cosv = cos(v); double sinu = sin(u); double sinv = sin(v); double denom_1 = 1. + u * u * sinv * sinv; double denom_2; if (std::abs(sinv) < 1.0e-9) { denom_2 = 0; } else { denom_2 = u * u + 1. / (sinv * sinv); } // Location of the point. This parametrization was taken from: // http://mathworld.wolfram.com/KuenSurface.html Pt[0] = 2.*sinv * (sinu - u * cosu) / denom_1; Pt[1] = 2.*sinv * (cosu + u * sinu) / denom_1; Pt[2] = log(tan(v / 2.)) + 2.*cosv / denom_1; // The derivative with respect to u: Du[1] = (2.*u * sinv * (cosu + ((u * u - 2.) * cosu - 2.*u * sinu) * sinv * sinv)) / (denom_1 * denom_1); // Avoid division by 0 if (denom_2 == 0.0 || sinv == 0.0) { Du[0] = 0.0; Du[2] = 0.0; } else { Du[0] = (2.*u / sinv * (2.*u * cosu + (u * u - 2. + 1 / (sinv * sinv)) * sinu)) / (denom_2 * denom_2); Du[2] = -4.*u * cosv / (denom_2 * denom_2 * sinv * sinv); } // The derivative with respect to v: Dv[0] = 2.*cosv * (u * u * sinv * sinv - 1.) * (u * cosu - sinu) / (denom_1 * denom_1); Dv[1] = 2.*cosv * (1. - u * u * sinv * sinv) * (cosu + u * sinu) / (denom_1 * denom_1); Dv[2] = 1. / sinv - (2. + u * u * (3. + cos(2 * u))) * sinv / (denom_1 * denom_1); } //----------------------------------------------------------------------------// double vtkParametricKuen::EvaluateScalar(double *, double *, double *) { return 0; } //----------------------------------------------------------------------------// void vtkParametricKuen::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "DeltaV0: " << this->DeltaV0 << "\n"; }