/*========================================================================= Program: Visualization Toolkit Module: vtkBiQuadraticTriangle.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkBiQuadraticTriangle.h" #include "vtkObjectFactory.h" #include "vtkMath.h" #include "vtkLine.h" #include "vtkQuadraticEdge.h" #include "vtkTriangle.h" #include "vtkDoubleArray.h" #include "vtkPoints.h" vtkStandardNewMacro(vtkBiQuadraticTriangle); //---------------------------------------------------------------------------- // Construct the line with two points. vtkBiQuadraticTriangle::vtkBiQuadraticTriangle() { this->Edge = vtkQuadraticEdge::New(); this->Face = vtkTriangle::New(); this->Scalars = vtkDoubleArray::New(); this->Scalars->SetNumberOfTuples(3); this->Points->SetNumberOfPoints(7); this->PointIds->SetNumberOfIds(7); for (int i = 0; i < 7; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,0); } } //---------------------------------------------------------------------------- vtkBiQuadraticTriangle::~vtkBiQuadraticTriangle() { this->Edge->Delete(); this->Face->Delete(); this->Scalars->Delete(); } //---------------------------------------------------------------------------- vtkCell *vtkBiQuadraticTriangle::GetEdge(int edgeId) { edgeId = (edgeId < 0 ? 0 : (edgeId > 2 ? 2 : edgeId )); int p = (edgeId+1) % 3; // load point id's this->Edge->PointIds->SetId(0,this->PointIds->GetId(edgeId)); this->Edge->PointIds->SetId(1,this->PointIds->GetId(p)); this->Edge->PointIds->SetId(2,this->PointIds->GetId(edgeId+3)); // load coordinates this->Edge->Points->SetPoint(0,this->Points->GetPoint(edgeId)); this->Edge->Points->SetPoint(1,this->Points->GetPoint(p)); this->Edge->Points->SetPoint(2,this->Points->GetPoint(edgeId+3)); return this->Edge; } //---------------------------------------------------------------------------- // order picked carefully for parametric coordinate conversion static int LinearTris[6][3] = { {0,3,6}, {6,3,4}, {6,4,5}, {0,6,5}, {3,1,4}, {5,4,2} }; int vtkBiQuadraticTriangle::EvaluatePosition(double* x, double* closestPoint, int& subId, double pcoords[3], double& minDist2, double *weights) { double pc[3], dist2, pc0, pc1; int ignoreId, i, returnStatus=0, status; double tempWeights[3]; double closest[3]; pc0 = pc1 = 0; //six linear triangles are used for (minDist2=VTK_DOUBLE_MAX, i=0; i < 6; i++) { this->Face->Points->SetPoint( 0,this->Points->GetPoint(LinearTris[i][0])); this->Face->Points->SetPoint( 1,this->Points->GetPoint(LinearTris[i][1])); this->Face->Points->SetPoint( 2,this->Points->GetPoint(LinearTris[i][2])); status = this->Face->EvaluatePosition(x,closest,ignoreId,pc,dist2, tempWeights); if ( status != -1 && dist2 < minDist2 ) { returnStatus = status; minDist2 = dist2; subId = i; pc0 = pc[0]; pc1 = pc[1]; if (closestPoint) { for (int j = 0; j <3; j++ ) { closestPoint[j] = closest[j]; } } } } // adjust parametric coordinates if ( returnStatus != -1 ) { if ( subId == 0 ) { pcoords[0] = pc0/2.0 + pc1/3.0; pcoords[1] = pc1/3.0; } else if ( subId == 1 ) { pcoords[0] = (1.0/3.0) + pc0/6.0 + pc1/6.0; pcoords[1] = (1.0/3.0) + pc0/(-3.0) + pc1/6.0; } else if ( subId == 2 ) { pcoords[0] = (1.0/3.0) + pc0/6.0 + pc1/(-3.0); pcoords[1] = (1.0/3.0) + pc0/6.0 + pc1/6.0; } else if ( subId == 3 ) { pcoords[0] = pc0/3.0; pcoords[1] = pc0/3.0 + pc1*0.5; } else if ( subId == 4 ) { pcoords[0] = pc0*0.5 + 0.5; pcoords[1] = 0.5*pc1; } else if ( subId == 5 ) { pcoords[0] = 0.5*pc0; pcoords[1] = 0.5 + 0.5*pc1; } pcoords[2] = 0.0; this->InterpolationFunctions(pcoords,weights); } return returnStatus; } //---------------------------------------------------------------------------- void vtkBiQuadraticTriangle::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { int i; double a0[3], a1[3], a2[3], a3[3], a4[3], a5[3], a6[3]; this->Points->GetPoint(0, a0); this->Points->GetPoint(1, a1); this->Points->GetPoint(2, a2); this->Points->GetPoint(3, a3); this->Points->GetPoint(4, a4); this->Points->GetPoint(5, a5); this->Points->GetPoint(6, a6); this->InterpolationFunctions(pcoords,weights); for (i=0; i<3; i++) { x[i] = a0[i]*weights[0] + a1[i]*weights[1] + a2[i]*weights[2] + a3[i]*weights[3] + a4[i]*weights[4] + a5[i]*weights[5] + a6[i]*weights[6]; } } //---------------------------------------------------------------------------- int vtkBiQuadraticTriangle::CellBoundary(int subId, double pcoords[3], vtkIdList *pts) { return this->Face->CellBoundary(subId, pcoords, pts); } //---------------------------------------------------------------------------- void vtkBiQuadraticTriangle::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray *verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { for ( int i=0; i < 6; i++) { this->Face->Points->SetPoint(0,this->Points->GetPoint(LinearTris[i][0])); this->Face->Points->SetPoint(1,this->Points->GetPoint(LinearTris[i][1])); this->Face->Points->SetPoint(2,this->Points->GetPoint(LinearTris[i][2])); if ( outPd ) { this->Face->PointIds->SetId(0,this->PointIds->GetId(LinearTris[i][0])); this->Face->PointIds->SetId(1,this->PointIds->GetId(LinearTris[i][1])); this->Face->PointIds->SetId(2,this->PointIds->GetId(LinearTris[i][2])); } this->Scalars->SetTuple(0,cellScalars->GetTuple(LinearTris[i][0])); this->Scalars->SetTuple(1,cellScalars->GetTuple(LinearTris[i][1])); this->Scalars->SetTuple(2,cellScalars->GetTuple(LinearTris[i][2])); this->Face->Contour(value, this->Scalars, locator, verts, lines, polys, inPd, outPd, inCd, cellId, outCd); } } //---------------------------------------------------------------------------- // Line-line intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int vtkBiQuadraticTriangle::IntersectWithLine(double* p1, double* p2, double tol, double& t, double* x, double* pcoords, int& subId) { int subTest, i; subId = 0; for (i=0; i < 6; i++) { this->Face->Points->SetPoint(0,this->Points->GetPoint(LinearTris[i][0])); this->Face->Points->SetPoint(1,this->Points->GetPoint(LinearTris[i][1])); this->Face->Points->SetPoint(2,this->Points->GetPoint(LinearTris[i][2])); if (this->Face->IntersectWithLine(p1, p2, tol, t, x, pcoords, subTest) ) { return 1; } } return 0; } //---------------------------------------------------------------------------- int vtkBiQuadraticTriangle::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts) { pts->Reset(); ptIds->Reset(); // Create six linear triangles for ( int i=0; i < 6; i++) { ptIds->InsertId(3*i,this->PointIds->GetId(LinearTris[i][0])); pts->InsertPoint(3*i,this->Points->GetPoint(LinearTris[i][0])); ptIds->InsertId(3*i+1,this->PointIds->GetId(LinearTris[i][1])); pts->InsertPoint(3*i+1,this->Points->GetPoint(LinearTris[i][1])); ptIds->InsertId(3*i+2,this->PointIds->GetId(LinearTris[i][2])); pts->InsertPoint(3*i+2,this->Points->GetPoint(LinearTris[i][2])); } return 1; } //---------------------------------------------------------------------------- void vtkBiQuadraticTriangle::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double v0[2], v1[2], v2[2], v3[2], v4[2], v5[2], v6[2]; // Local coordinates of Each point. double v10[3], v20[3], lenX; // Reesentation of local Axis double x0[3], x1[3], x2[3], x3[3], x4[3], x5[3], x6[3]; // Points of the model double n[3], vec20[3], vec30[3], vec40[3], vec50[3], vec60[3]; // Normal and vector of each point. double *J[2], J0[2], J1[2]; // Jacobian Matrix double *JI[2], JI0[2], JI1[2]; // Inverse of the Jacobian Matrix double funcDerivs[14], sum[2], dBydx, dBydy; // Derivated values // Project points of BiQuadTriangle into a 2D system this->Points->GetPoint(0, x0); this->Points->GetPoint(1, x1); this->Points->GetPoint(2, x2); this->Points->GetPoint(3, x3); this->Points->GetPoint(4, x4); this->Points->GetPoint(5, x5); this->Points->GetPoint(6, x6); vtkTriangle::ComputeNormal (x0, x1, x2, n); for (int i=0; i < 3; i++) // Compute the vector for each point { v10[i] = x1[i] - x0[i]; vec20[i] = x2[i] - x0[i]; vec30[i] = x3[i] - x0[i]; vec40[i] = x4[i] - x0[i]; vec50[i] = x5[i] - x0[i]; vec60[i] = x6[i] - x0[i]; } vtkMath::Cross(n,v10,v20); //creates local y' axis if ( (lenX=vtkMath::Normalize(v10)) <= 0.0 || vtkMath::Normalize(v20) <= 0.0 ) //degenerate { for (int j=0; j < dim; j++ ) { for (int i=0; i < 3; i++ ) { derivs[j*dim + i] = 0.0; } } return; } v0[0] = v0[1] = 0.0; //convert points to 2D (i.e., local system) v1[0] = lenX; v1[1] = 0.0; v2[0] = vtkMath::Dot(vec20,v10); v2[1] = vtkMath::Dot(vec20,v20); v3[0] = vtkMath::Dot(vec30,v10); v3[1] = vtkMath::Dot(vec30,v20); v4[0] = vtkMath::Dot(vec40,v10); v4[1] = vtkMath::Dot(vec40,v20); v5[0] = vtkMath::Dot(vec50,v10); v5[1] = vtkMath::Dot(vec50,v20); v6[0] = vtkMath::Dot(vec60,v10); v6[1] = vtkMath::Dot(vec60,v20); this->InterpolationDerivs(pcoords, funcDerivs); // Compute Jacobian and inverse Jacobian J[0] = J0; J[1] = J1; JI[0] = JI0; JI[1] = JI1; J[0][0] = v0[0]*funcDerivs[0] + v1[0]*funcDerivs[1] + v2[0]*funcDerivs[2] + v3[0]*funcDerivs[3] + v4[0]*funcDerivs[4] + v5[0]*funcDerivs[5] + v6[0]*funcDerivs[6]; J[0][1] = v0[1]*funcDerivs[0] + v1[1]*funcDerivs[1] + v2[1]*funcDerivs[2] + v3[1]*funcDerivs[3] + v4[1]*funcDerivs[4] + v5[1]*funcDerivs[5] + v6[1]*funcDerivs[6]; J[1][0] = v0[0]*funcDerivs[7] + v1[0]*funcDerivs[8] + v2[0]*funcDerivs[9] + v3[0]*funcDerivs[10] + v4[0]*funcDerivs[11] + v5[0]*funcDerivs[12] + v6[0]*funcDerivs[13]; J[1][1] = v0[1]*funcDerivs[7] + v1[1]*funcDerivs[8] + v2[1]*funcDerivs[9] + v3[1]*funcDerivs[10] + v4[1]*funcDerivs[11] + v5[1]*funcDerivs[12] + v6[1]*funcDerivs[13]; // Compute inverse Jacobian, return if Jacobian is singular if (!vtkMath::InvertMatrix(J,JI,2)) { for (int j=0; j < dim; j++ ) { for (int i=0; i < 3; i++ ) { derivs[j*dim + i] = 0.0; } } return; } // Loop over "dim" derivative values. For each set of values, // compute derivatives // in local system and then transform into modelling system. // First compute derivatives in local x'-y' coordinate system for (int j=0; j < dim; j++ ) { sum[0] = sum[1] = 0.0; for (int i=0; i < 7; i++) //loop over interp. function derivatives { sum[0] += funcDerivs[i] * values[dim*i + j]; sum[1] += funcDerivs[7 + i] * values[dim*i + j]; } dBydx = sum[0]*JI[0][0] + sum[1]*JI[0][1]; dBydy = sum[0]*JI[1][0] + sum[1]*JI[1][1]; // Transform into global system (dot product with global axes) derivs[3*j] = dBydx * v10[0] + dBydy * v20[0]; derivs[3*j + 1] = dBydx * v10[1] + dBydy * v20[1]; derivs[3*j + 2] = dBydx * v10[2] + dBydy * v20[2]; } } //---------------------------------------------------------------------------- // Clip this quadratic triangle using the scalar value provided. Like // contouring, except that it cuts the triangle to produce other quads // and triangles. void vtkBiQuadraticTriangle::Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { for ( int i=0; i < 6; i++) { this->Face->Points->SetPoint(0,this->Points->GetPoint(LinearTris[i][0])); this->Face->Points->SetPoint(1,this->Points->GetPoint(LinearTris[i][1])); this->Face->Points->SetPoint(2,this->Points->GetPoint(LinearTris[i][2])); this->Face->PointIds->SetId(0,this->PointIds->GetId(LinearTris[i][0])); this->Face->PointIds->SetId(1,this->PointIds->GetId(LinearTris[i][1])); this->Face->PointIds->SetId(2,this->PointIds->GetId(LinearTris[i][2])); this->Scalars->SetTuple(0,cellScalars->GetTuple(LinearTris[i][0])); this->Scalars->SetTuple(1,cellScalars->GetTuple(LinearTris[i][1])); this->Scalars->SetTuple(2,cellScalars->GetTuple(LinearTris[i][2])); this->Face->Clip(value, this->Scalars, locator, polys, inPd, outPd, inCd, cellId, outCd, insideOut); } } //---------------------------------------------------------------------------- // Compute maximum parametric distance to cell double vtkBiQuadraticTriangle::GetParametricDistance(double pcoords[3]) { int i; double pDist, pDistMax=0.0; double pc[3]; pc[0] = pcoords[0]; pc[1] = pcoords[1]; pc[2] = 1.0 - pcoords[0] - pcoords[1]; for (i=0; i<3; i++) { if ( pc[i] < 0.0 ) { pDist = -pc[i]; } else if ( pc[i] > 1.0 ) { pDist = pc[i] - 1.0; } else //inside the cell in the parametric direction { pDist = 0.0; } if ( pDist > pDistMax ) { pDistMax = pDist; } } return pDistMax; } //---------------------------------------------------------------------------- // Compute interpolation functions. The first three nodes are the triangle // vertices; the next three nodes are mid-edge nodes; the last node is the mid-cell node. void vtkBiQuadraticTriangle::InterpolationFunctions(double pcoords[3], double weights[7]) { double r = pcoords[0]; double s = pcoords[1]; weights[0] = 1.0 - 3.0*(r + s) + 2.0*(r*r + s*s) + 7.0*r*s - 3.0*r*s*(r + s); weights[1] = r*(-1.0 + 2.0*r + 3.0*s - 3.0*s*(r + s)); weights[2] = s*(-1.0 + 3.0*r + 2.0*s - 3.0*r*(r + s)); weights[3] = 4.0*r*(1.0 - r - 4.0*s + 3.0*s*(r + s)); weights[4] = 4.0*r*s*(-2.0 + 3.0*(r + s)); weights[5] = 4.0*s*(1.0 - 4.0*r - s + 3.0*r*(r + s)); weights[6] = 27.0*r*s*(1.0 - r - s); } //---------------------------------------------------------------------------- // Derivatives in parametric space. void vtkBiQuadraticTriangle::InterpolationDerivs(double pcoords[3], double derivs[14]) { double r = pcoords[0]; double s = pcoords[1]; // r-derivatives derivs[0] = -3.0 + 4.0*r + 7.0*s - 6.0*r*s - 3.0*s*s; derivs[1] = -1.0 + 4.0*r + 3.0*s - 6.0*r*s - 3.0*s*s; derivs[2] = 3.0*s*(1.0 - s - 2.0*r); derivs[3] = 4.0*(1.0 - 2.0*r - 4.0*s + 6.0*r*s + 3.0*s*s); derivs[4] = 4.0*s*(-2.0 + 6.0*r + 3.0*s); derivs[5] = 4.0*s*(-4.0 + 6.0*r + 3.0*s); derivs[6] = 27.0*s*(1.0 - 2.0*r - s); // s-derivatives derivs[7] = -3.0 + 7.0*r + 4.0*s - 6.0*r*s - 3.0*r*r; derivs[8] = 3.0*r*(1.0 - r - 2.0*s); derivs[9] = -1.0 + 3.0*r + 4.0*s - 6.0*r*s - 3.0*r*r; derivs[10] = 4.0*r*(-4.0 + 3.0*r + 6.0*s); derivs[11] = 4.0*r*(-2.0 + 3.0*r + 6.0*s); derivs[12] = 4.0*(1.0 - 4.0*r -2.0*s + 6.0*r*s + 3.0*r*r); derivs[13] = 27.0*r*(1.0 - r - 2.0*s); } //---------------------------------------------------------------------------- static double vtkBiQTriangleCellPCoords[21] = { 0.0,0.0,0.0, 1.0,0.0,0.0, 0.0,1.0,0.0, 0.5,0.0,0.0, 0.5,0.5,0.0, 0.0,0.5,0.0, (1.0/3.0),(1.0/3.0),0.0}; double *vtkBiQuadraticTriangle::GetParametricCoords() { return vtkBiQTriangleCellPCoords; } //---------------------------------------------------------------------------- void vtkBiQuadraticTriangle::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Edge: " << this->Edge << endl; os << indent << "Face: " << this->Face << endl; os << indent << "Scalars: " << this->Scalars << endl; }