/*========================================================================= Program: Visualization Toolkit Module: vtkImageData.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkImageData.h" #include "vtkCellData.h" #include "vtkDataArray.h" #include "vtkGenericCell.h" #include "vtkInformation.h" #include "vtkInformationIntegerKey.h" #include "vtkInformationVector.h" #include "vtkLargeInteger.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPixel.h" #include "vtkPointData.h" #include "vtkPoints.h" #include "vtkVertex.h" #include "vtkVoxel.h" vtkStandardNewMacro(vtkImageData); //---------------------------------------------------------------------------- vtkImageData::vtkImageData() { int idx; this->Vertex = nullptr; this->Line = nullptr; this->Pixel = nullptr; this->Voxel = nullptr; this->DataDescription = VTK_EMPTY; for (idx = 0; idx < 3; ++idx) { this->Dimensions[idx] = 0; this->Increments[idx] = 0; this->Origin[idx] = 0.0; this->Spacing[idx] = 1.0; this->Point[idx] = 0.0; } int extent[6] = {0, -1, 0, -1, 0, -1}; memcpy(this->Extent, extent, 6*sizeof(int)); this->Information->Set(vtkDataObject::DATA_EXTENT_TYPE(), VTK_3D_EXTENT); this->Information->Set(vtkDataObject::DATA_EXTENT(), this->Extent, 6); } //---------------------------------------------------------------------------- vtkImageData::~vtkImageData() { if (this->Vertex) { this->Vertex->Delete(); } if (this->Line) { this->Line->Delete(); } if (this->Pixel) { this->Pixel->Delete(); } if (this->Voxel) { this->Voxel->Delete(); } } //---------------------------------------------------------------------------- // Copy the geometric and topological structure of an input structured points // object. void vtkImageData::CopyStructure(vtkDataSet *ds) { vtkImageData *sPts=static_cast(ds); this->Initialize(); int i; for (i=0; i<3; i++) { this->Dimensions[i] = sPts->Dimensions[i]; this->Spacing[i] = sPts->Spacing[i]; this->Origin[i] = sPts->Origin[i]; } this->SetExtent(sPts->GetExtent()); } //---------------------------------------------------------------------------- void vtkImageData::Initialize() { this->Superclass::Initialize(); if(this->Information) { this->SetDimensions(0,0,0); } } //---------------------------------------------------------------------------- void vtkImageData::CopyInformationFromPipeline(vtkInformation* information) { // Let the superclass copy whatever it wants. this->Superclass::CopyInformationFromPipeline(information); this->CopyOriginAndSpacingFromPipeline(information); } //---------------------------------------------------------------------------- void vtkImageData::CopyInformationToPipeline(vtkInformation* info) { // Let the superclass copy information to the pipeline. this->Superclass::CopyInformationToPipeline(info); // Copy the spacing, origin, and scalar info info->Set(vtkDataObject::SPACING(), this->Spacing, 3); info->Set(vtkDataObject::ORIGIN(), this->Origin, 3); vtkDataObject::SetPointDataActiveScalarInfo( info, this->GetScalarType(), this->GetNumberOfScalarComponents()); } //---------------------------------------------------------------------------- // Graphics filters reallocate every execute. Image filters try to reuse // the scalars. void vtkImageData::PrepareForNewData() { // free everything but the scalars vtkDataArray *scalars = this->GetPointData()->GetScalars(); if (scalars) { scalars->Register(this); } this->Initialize(); if (scalars) { this->GetPointData()->SetScalars(scalars); scalars->UnRegister(this); } } //---------------------------------------------------------------------------- template unsigned long vtkImageDataGetTypeSize(T*) { return sizeof(T); } //---------------------------------------------------------------------------- vtkCell *vtkImageData::GetCell(vtkIdType cellId) { vtkCell *cell = nullptr; int loc[3]; vtkIdType idx, npts; int iMin, iMax, jMin, jMax, kMin, kMax; double x[3]; const double *origin = this->Origin; const double *spacing = this->Spacing; const int* extent = this->Extent; // Use vtkIdType to avoid overflow on large images vtkIdType dims[3]; dims[0] = extent[1] - extent[0] + 1; dims[1] = extent[3] - extent[2] + 1; dims[2] = extent[5] - extent[4] + 1; vtkIdType d01 = dims[0]*dims[1]; iMin = iMax = jMin = jMax = kMin = kMax = 0; if (dims[0] == 0 || dims[1] == 0 || dims[2] == 0) { vtkErrorMacro("Requesting a cell from an empty image."); return nullptr; } switch (this->DataDescription) { case VTK_EMPTY: //cell = this->EmptyCell; return nullptr; case VTK_SINGLE_POINT: // cellId can only be = 0 cell = this->Vertex; break; case VTK_X_LINE: iMin = cellId; iMax = cellId + 1; cell = this->Line; break; case VTK_Y_LINE: jMin = cellId; jMax = cellId + 1; cell = this->Line; break; case VTK_Z_LINE: kMin = cellId; kMax = cellId + 1; cell = this->Line; break; case VTK_XY_PLANE: iMin = cellId % (dims[0]-1); iMax = iMin + 1; jMin = cellId / (dims[0]-1); jMax = jMin + 1; cell = this->Pixel; break; case VTK_YZ_PLANE: jMin = cellId % (dims[1]-1); jMax = jMin + 1; kMin = cellId / (dims[1]-1); kMax = kMin + 1; cell = this->Pixel; break; case VTK_XZ_PLANE: iMin = cellId % (dims[0]-1); iMax = iMin + 1; kMin = cellId / (dims[0]-1); kMax = kMin + 1; cell = this->Pixel; break; case VTK_XYZ_GRID: iMin = cellId % (dims[0] - 1); iMax = iMin + 1; jMin = (cellId / (dims[0] - 1)) % (dims[1] - 1); jMax = jMin + 1; kMin = cellId / ((dims[0] - 1) * (dims[1] - 1)); kMax = kMin + 1; cell = this->Voxel; break; default: vtkErrorMacro("Invalid DataDescription."); return nullptr; } // Extract point coordinates and point ids // Ids are relative to extent min. npts = 0; for (loc[2]=kMin; loc[2]<=kMax; loc[2]++) { x[2] = origin[2] + (loc[2]+extent[4]) * spacing[2]; for (loc[1]=jMin; loc[1]<=jMax; loc[1]++) { x[1] = origin[1] + (loc[1]+extent[2]) * spacing[1]; for (loc[0]=iMin; loc[0]<=iMax; loc[0]++) { x[0] = origin[0] + (loc[0]+extent[0]) * spacing[0]; idx = loc[0] + loc[1]*dims[0] + loc[2]*d01; cell->PointIds->SetId(npts,idx); cell->Points->SetPoint(npts++,x); } } } return cell; } vtkCell *vtkImageData::GetCell(int iMin, int jMin, int kMin) { vtkCell *cell = nullptr; int loc[3]; vtkIdType idx, npts; int iMax = 0, jMax = 0, kMax = 0; double x[3]; const double *origin = this->Origin; const double *spacing = this->Spacing; const int *extent = this->Extent; // Use vtkIdType to avoid overflow on large images vtkIdType cellDims[3]; cellDims[0] = extent[1] - extent[0]; cellDims[1] = extent[3] - extent[2]; cellDims[2] = extent[5] - extent[4]; vtkIdType dims[3]; dims[0] = cellDims[0] + 1; dims[1] = cellDims[1] + 1; dims[2] = cellDims[2] + 1; vtkIdType d01 = dims[0] * dims[1]; if (dims[0] == 0 || dims[1] == 0 || dims[2] == 0) { vtkErrorMacro("Requesting a cell from an empty image."); return nullptr; } switch (this->DataDescription) { case VTK_EMPTY: // cell = this->EmptyCell; return nullptr; case VTK_SINGLE_POINT: // cellId can only be = 0 cell = this->Vertex; break; case VTK_X_LINE: iMax = iMin + 1; jMax = jMin = 0; kMax = kMin = 0; cell = this->Line; break; case VTK_Y_LINE: iMax = iMin = 0; jMax = jMin + 1; kMax = kMin = 0; cell = this->Line; break; case VTK_Z_LINE: iMax = iMin = 0; jMax = jMin = 0; kMax = kMin + 1; cell = this->Line; break; case VTK_XY_PLANE: iMax = iMin + 1; jMax = jMin + 1; kMax = kMin = 0; cell = this->Pixel; break; case VTK_YZ_PLANE: iMax = iMin = 0; jMax = jMin + 1; kMax = kMin + 1; cell = this->Pixel; break; case VTK_XZ_PLANE: iMax = iMin + 1; jMax = jMin = 0; kMax = kMin + 1; cell = this->Pixel; break; case VTK_XYZ_GRID: iMax = iMin + 1; jMax = jMin + 1; kMax = kMin + 1; cell = this->Voxel; break; default: vtkErrorMacro("Invalid DataDescription."); return nullptr; } // Extract point coordinates and point ids // Ids are relative to extent min. npts = 0; for (loc[2] = kMin; loc[2] <= kMax; loc[2]++) { x[2] = origin[2] + (loc[2] + extent[4]) * spacing[2]; for (loc[1] = jMin; loc[1] <= jMax; loc[1]++) { x[1] = origin[1] + (loc[1] + extent[2]) * spacing[1]; for (loc[0] = iMin; loc[0] <= iMax; loc[0]++) { x[0] = origin[0] + (loc[0] + extent[0]) * spacing[0]; idx = loc[0] + loc[1] * dims[0] + loc[2] * d01; cell->PointIds->SetId(npts, idx); cell->Points->SetPoint(npts++, x); } } } return cell; } //---------------------------------------------------------------------------- void vtkImageData::GetCell(vtkIdType cellId, vtkGenericCell *cell) { vtkIdType npts, idx; int loc[3]; int iMin, iMax, jMin, jMax, kMin, kMax; const double *origin = this->Origin; const double *spacing = this->Spacing; double x[3]; const int* extent = this->Extent; vtkIdType dims[3]; dims[0] = extent[1] - extent[0] + 1; dims[1] = extent[3] - extent[2] + 1; dims[2] = extent[5] - extent[4] + 1; vtkIdType d01 = dims[0]*dims[1]; iMin = iMax = jMin = jMax = kMin = kMax = 0; if (dims[0] == 0 || dims[1] == 0 || dims[2] == 0) { vtkErrorMacro("Requesting a cell from an empty image."); cell->SetCellTypeToEmptyCell(); return; } switch (this->DataDescription) { case VTK_EMPTY: cell->SetCellTypeToEmptyCell(); return; case VTK_SINGLE_POINT: // cellId can only be = 0 cell->SetCellTypeToVertex(); break; case VTK_X_LINE: iMin = cellId; iMax = cellId + 1; cell->SetCellTypeToLine(); break; case VTK_Y_LINE: jMin = cellId; jMax = cellId + 1; cell->SetCellTypeToLine(); break; case VTK_Z_LINE: kMin = cellId; kMax = cellId + 1; cell->SetCellTypeToLine(); break; case VTK_XY_PLANE: iMin = cellId % (dims[0]-1); iMax = iMin + 1; jMin = cellId / (dims[0]-1); jMax = jMin + 1; cell->SetCellTypeToPixel(); break; case VTK_YZ_PLANE: jMin = cellId % (dims[1]-1); jMax = jMin + 1; kMin = cellId / (dims[1]-1); kMax = kMin + 1; cell->SetCellTypeToPixel(); break; case VTK_XZ_PLANE: iMin = cellId % (dims[0]-1); iMax = iMin + 1; kMin = cellId / (dims[0]-1); kMax = kMin + 1; cell->SetCellTypeToPixel(); break; case VTK_XYZ_GRID: iMin = cellId % (dims[0] - 1); iMax = iMin + 1; jMin = (cellId / (dims[0] - 1)) % (dims[1] - 1); jMax = jMin + 1; kMin = cellId / ((dims[0] - 1) * (dims[1] - 1)); kMax = kMin + 1; cell->SetCellTypeToVoxel(); break; } // Extract point coordinates and point ids for (npts=0,loc[2]=kMin; loc[2]<=kMax; loc[2]++) { x[2] = origin[2] + (loc[2]+extent[4]) * spacing[2]; for (loc[1]=jMin; loc[1]<=jMax; loc[1]++) { x[1] = origin[1] + (loc[1]+extent[2]) * spacing[1]; for (loc[0]=iMin; loc[0]<=iMax; loc[0]++) { x[0] = origin[0] + (loc[0]+extent[0]) * spacing[0]; idx = loc[0] + loc[1]*dims[0] + loc[2]*d01; cell->PointIds->SetId(npts,idx); cell->Points->SetPoint(npts++,x); } } } } //---------------------------------------------------------------------------- // Fast implementation of GetCellBounds(). Bounds are calculated without // constructing a cell. void vtkImageData::GetCellBounds(vtkIdType cellId, double bounds[6]) { int loc[3], iMin, iMax, jMin, jMax, kMin, kMax; double x[3]; const double *origin = this->Origin; const double *spacing = this->Spacing; const int* extent = this->Extent; vtkIdType dims[3]; dims[0] = extent[1] - extent[0] + 1; dims[1] = extent[3] - extent[2] + 1; dims[2] = extent[5] - extent[4] + 1; iMin = iMax = jMin = jMax = kMin = kMax = 0; if (dims[0] == 0 || dims[1] == 0 || dims[2] == 0) { vtkErrorMacro("Requesting cell bounds from an empty image."); bounds[0] = bounds[1] = bounds[2] = bounds[3] = bounds[4] = bounds[5] = 0.0; return; } switch (this->DataDescription) { case VTK_EMPTY: return; case VTK_SINGLE_POINT: // cellId can only be = 0 break; case VTK_X_LINE: iMin = cellId; iMax = cellId + 1; break; case VTK_Y_LINE: jMin = cellId; jMax = cellId + 1; break; case VTK_Z_LINE: kMin = cellId; kMax = cellId + 1; break; case VTK_XY_PLANE: iMin = cellId % (dims[0]-1); iMax = iMin + 1; jMin = cellId / (dims[0]-1); jMax = jMin + 1; break; case VTK_YZ_PLANE: jMin = cellId % (dims[1]-1); jMax = jMin + 1; kMin = cellId / (dims[1]-1); kMax = kMin + 1; break; case VTK_XZ_PLANE: iMin = cellId % (dims[0]-1); iMax = iMin + 1; kMin = cellId / (dims[0]-1); kMax = kMin + 1; break; case VTK_XYZ_GRID: iMin = cellId % (dims[0] - 1); iMax = iMin + 1; jMin = (cellId / (dims[0] - 1)) % (dims[1] - 1); jMax = jMin + 1; kMin = cellId / ((dims[0] - 1) * (dims[1] - 1)); kMax = kMin + 1; break; } // carefully compute the bounds if (kMax >= kMin && jMax >= jMin && iMax >= iMin) { bounds[0] = bounds[2] = bounds[4] = VTK_DOUBLE_MAX; bounds[1] = bounds[3] = bounds[5] = VTK_DOUBLE_MIN; // Extract point coordinates for (loc[2]=kMin; loc[2]<=kMax; loc[2]++) { x[2] = origin[2] + (loc[2]+extent[4]) * spacing[2]; bounds[4] = (x[2] < bounds[4] ? x[2] : bounds[4]); bounds[5] = (x[2] > bounds[5] ? x[2] : bounds[5]); } for (loc[1]=jMin; loc[1]<=jMax; loc[1]++) { x[1] = origin[1] + (loc[1]+extent[2]) * spacing[1]; bounds[2] = (x[1] < bounds[2] ? x[1] : bounds[2]); bounds[3] = (x[1] > bounds[3] ? x[1] : bounds[3]); } for (loc[0]=iMin; loc[0]<=iMax; loc[0]++) { x[0] = origin[0] + (loc[0]+extent[0]) * spacing[0]; bounds[0] = (x[0] < bounds[0] ? x[0] : bounds[0]); bounds[1] = (x[0] > bounds[1] ? x[0] : bounds[1]); } } else { vtkMath::UninitializeBounds(bounds); } } //---------------------------------------------------------------------------- void vtkImageData::GetPoint(vtkIdType ptId, double x[3]) { int i, loc[3]; const double *origin = this->Origin; const double *spacing = this->Spacing; const int* extent = this->Extent; vtkIdType dims[3]; dims[0] = extent[1] - extent[0] + 1; dims[1] = extent[3] - extent[2] + 1; dims[2] = extent[5] - extent[4] + 1; x[0] = x[1] = x[2] = 0.0; if (dims[0] == 0 || dims[1] == 0 || dims[2] == 0) { vtkErrorMacro("Requesting a point from an empty image."); return; } // "loc" holds the point x,y,z indices loc[0] = loc[1] = loc[2] = 0; switch (this->DataDescription) { case VTK_EMPTY: return; case VTK_SINGLE_POINT: break; case VTK_X_LINE: loc[0] = ptId; break; case VTK_Y_LINE: loc[1] = ptId; break; case VTK_Z_LINE: loc[2] = ptId; break; case VTK_XY_PLANE: loc[0] = ptId % dims[0]; loc[1] = ptId / dims[0]; break; case VTK_YZ_PLANE: loc[1] = ptId % dims[1]; loc[2] = ptId / dims[1]; break; case VTK_XZ_PLANE: loc[0] = ptId % dims[0]; loc[2] = ptId / dims[0]; break; case VTK_XYZ_GRID: loc[0] = ptId % dims[0]; loc[1] = (ptId / dims[0]) % dims[1]; loc[2] = ptId / (dims[0]*dims[1]); break; } for (i=0; i<3; i++) { x[i] = origin[i] + (loc[i]+extent[i*2]) * spacing[i]; } } //---------------------------------------------------------------------------- vtkIdType vtkImageData::FindPoint(double x[3]) { int i, loc[3]; double d; const double *origin = this->Origin; const double *spacing = this->Spacing; const int* extent = this->Extent; vtkIdType dims[3]; dims[0] = extent[1] - extent[0] + 1; dims[1] = extent[3] - extent[2] + 1; dims[2] = extent[5] - extent[4] + 1; // // Compute the ijk location // for (i=0; i<3; i++) { d = x[i] - origin[i]; loc[i] = vtkMath::Floor((d / spacing[i]) + 0.5); if ( loc[i] < extent[i*2] || loc[i] > extent[i*2+1] ) { return -1; } // since point id is relative to the first point actually stored loc[i] -= extent[i*2]; } // // From this location get the point id // return loc[2]*dims[0]*dims[1] + loc[1]*dims[0] + loc[0]; } //---------------------------------------------------------------------------- vtkIdType vtkImageData::FindCell(double x[3], vtkCell *vtkNotUsed(cell), vtkGenericCell *vtkNotUsed(gencell), vtkIdType vtkNotUsed(cellId), double tol2, int& subId, double pcoords[3], double *weights) { return this->FindCell( x, nullptr, 0, tol2, subId, pcoords, weights ); } //---------------------------------------------------------------------------- vtkIdType vtkImageData::FindCell(double x[3], vtkCell *vtkNotUsed(cell), vtkIdType vtkNotUsed(cellId), double tol2, int& subId, double pcoords[3], double *weights) { int idx[3]; // Compute the voxel index if ( this->ComputeStructuredCoordinates(x, idx, pcoords) == 0 ) { // If voxel index is out of bounds, check point "x" against the // bounds to see if within tolerance of the bounds. const int* extent = this->Extent; const double* spacing = this->Spacing; const double* bounds = this->Bounds; // Compute squared distance of point x from the boundary double dist2 = 0.0; for (int i=0; i<3; i++) { int minIdx = extent[i*2]; int maxIdx = extent[i*2+1]; int negSpacing = (spacing[i] < 0); double minBound = bounds[i*2 + negSpacing]; double maxBound = bounds[i*2 + (1-negSpacing)]; if ( idx[i] < minIdx ) { idx[i] = minIdx; pcoords[i] = 0.0; double dist = x[i] - minBound; dist2 += dist*dist; } else if ( idx[i] >= maxIdx ) { if (maxIdx == minIdx) { idx[i] = minIdx; pcoords[i] = 0.0; } else { idx[i] = maxIdx-1; pcoords[i] = 1.0; } double dist = x[i] - maxBound; dist2 += dist*dist; } } // Check squared distance against the tolerance if (dist2 > tol2) { return -1; } } if (weights) { // Shift parametric coordinates for XZ/YZ planes if( this->DataDescription == VTK_XZ_PLANE ) { pcoords[1] = pcoords[2]; pcoords[2] = 0.0; } else if( this->DataDescription == VTK_YZ_PLANE ) { pcoords[0] = pcoords[1]; pcoords[1] = pcoords[2]; pcoords[2] = 0.0; } else if( this->DataDescription == VTK_XY_PLANE ) { pcoords[2] = 0.0; } vtkVoxel::InterpolationFunctions( pcoords, weights ); } // // From this location get the cell id // subId = 0; return this->ComputeCellId(idx); } //---------------------------------------------------------------------------- vtkCell *vtkImageData::FindAndGetCell(double x[3], vtkCell *vtkNotUsed(cell), vtkIdType vtkNotUsed(cellId), double tol2, int& subId, double pcoords[3], double *weights) { vtkIdType cellId = this->FindCell(x, nullptr, 0, tol2, subId, pcoords, nullptr); if (cellId < 0) { return nullptr; } vtkCell *cell = this->GetCell(cellId); cell->InterpolateFunctions(pcoords, weights); return cell; } //---------------------------------------------------------------------------- int vtkImageData::GetCellType(vtkIdType vtkNotUsed(cellId)) { switch (this->DataDescription) { case VTK_EMPTY: return VTK_EMPTY_CELL; case VTK_SINGLE_POINT: return VTK_VERTEX; case VTK_X_LINE: case VTK_Y_LINE: case VTK_Z_LINE: return VTK_LINE; case VTK_XY_PLANE: case VTK_YZ_PLANE: case VTK_XZ_PLANE: return VTK_PIXEL; case VTK_XYZ_GRID: return VTK_VOXEL; default: vtkErrorMacro(<<"Bad data description!"); return VTK_EMPTY_CELL; } } //---------------------------------------------------------------------------- void vtkImageData::ComputeBounds() { if ( this->GetMTime() <= this->ComputeTime ) { return; } const double *origin = this->Origin; const double *spacing = this->Spacing; const int* extent = this->Extent; if ( extent[0] > extent[1] || extent[2] > extent[3] || extent[4] > extent[5] ) { vtkMath::UninitializeBounds(this->Bounds); } else { int swapXBounds = (spacing[0] < 0); // 1 if true, 0 if false int swapYBounds = (spacing[1] < 0); // 1 if true, 0 if false int swapZBounds = (spacing[2] < 0); // 1 if true, 0 if false this->Bounds[0] = origin[0] + (extent[0+swapXBounds] * spacing[0]); this->Bounds[2] = origin[1] + (extent[2+swapYBounds] * spacing[1]); this->Bounds[4] = origin[2] + (extent[4+swapZBounds] * spacing[2]); this->Bounds[1] = origin[0] + (extent[1-swapXBounds] * spacing[0]); this->Bounds[3] = origin[1] + (extent[3-swapYBounds] * spacing[1]); this->Bounds[5] = origin[2] + (extent[5-swapZBounds] * spacing[2]); } this->ComputeTime.Modified(); } //---------------------------------------------------------------------------- // Given structured coordinates (i,j,k) for a voxel cell, compute the eight // gradient values for the voxel corners. The order in which the gradient // vectors are arranged corresponds to the ordering of the voxel points. // Gradient vector is computed by central differences (except on edges of // volume where forward difference is used). The scalars s are the scalars // from which the gradient is to be computed. This method will treat // only 3D structured point datasets (i.e., volumes). void vtkImageData::GetVoxelGradient(int i, int j, int k, vtkDataArray *s, vtkDataArray *g) { double gv[3]; int ii, jj, kk, idx=0; for ( kk=0; kk < 2; kk++) { for ( jj=0; jj < 2; jj++) { for ( ii=0; ii < 2; ii++) { this->GetPointGradient(i+ii, j+jj, k+kk, s, gv); g->SetTuple(idx++, gv); } } } } //---------------------------------------------------------------------------- // Given structured coordinates (i,j,k) for a point in a structured point // dataset, compute the gradient vector from the scalar data at that point. // The scalars s are the scalars from which the gradient is to be computed. // This method will treat structured point datasets of any dimension. void vtkImageData::GetPointGradient(int i, int j, int k, vtkDataArray *s, double g[3]) { const double *ar = this->Spacing; double sp, sm; const int *extent = this->Extent; vtkIdType dims[3]; dims[0] = extent[1] - extent[0] + 1; dims[1] = extent[3] - extent[2] + 1; dims[2] = extent[5] - extent[4] + 1; vtkIdType ijsize=dims[0]*dims[1]; // Adjust i,j,k to the start of the extent i -= extent[0]; j -= extent[2]; k -= extent[4]; // Check for out-of-bounds if (i < 0 || i >= dims[0] || j < 0 || j >= dims[1] || k < 0 || k >= dims[2]) { g[0] = g[1] = g[2] = 0.0; return; } // x-direction if ( dims[0] == 1 ) { g[0] = 0.0; } else if ( i == 0 ) { sp = s->GetComponent(i+1 + j*dims[0] + k*ijsize, 0); sm = s->GetComponent(i + j*dims[0] + k*ijsize, 0); g[0] = (sm - sp) / ar[0]; } else if ( i == (dims[0]-1) ) { sp = s->GetComponent(i + j*dims[0] + k*ijsize,0); sm = s->GetComponent(i-1 + j*dims[0] + k*ijsize,0); g[0] = (sm - sp) / ar[0]; } else { sp = s->GetComponent(i+1 + j*dims[0] + k*ijsize,0); sm = s->GetComponent(i-1 + j*dims[0] + k*ijsize,0); g[0] = 0.5 * (sm - sp) / ar[0]; } // y-direction if ( dims[1] == 1 ) { g[1] = 0.0; } else if ( j == 0 ) { sp = s->GetComponent(i + (j+1)*dims[0] + k*ijsize,0); sm = s->GetComponent(i + j*dims[0] + k*ijsize,0); g[1] = (sm - sp) / ar[1]; } else if ( j == (dims[1]-1) ) { sp = s->GetComponent(i + j*dims[0] + k*ijsize,0); sm = s->GetComponent(i + (j-1)*dims[0] + k*ijsize,0); g[1] = (sm - sp) / ar[1]; } else { sp = s->GetComponent(i + (j+1)*dims[0] + k*ijsize,0); sm = s->GetComponent(i + (j-1)*dims[0] + k*ijsize,0); g[1] = 0.5 * (sm - sp) / ar[1]; } // z-direction if ( dims[2] == 1 ) { g[2] = 0.0; } else if ( k == 0 ) { sp = s->GetComponent(i + j*dims[0] + (k+1)*ijsize,0); sm = s->GetComponent(i + j*dims[0] + k*ijsize,0); g[2] = (sm - sp) / ar[2]; } else if ( k == (dims[2]-1) ) { sp = s->GetComponent(i + j*dims[0] + k*ijsize,0); sm = s->GetComponent(i + j*dims[0] + (k-1)*ijsize,0); g[2] = (sm - sp) / ar[2]; } else { sp = s->GetComponent(i + j*dims[0] + (k+1)*ijsize,0); sm = s->GetComponent(i + j*dims[0] + (k-1)*ijsize,0); g[2] = 0.5 * (sm - sp) / ar[2]; } } //---------------------------------------------------------------------------- // Set dimensions of structured points dataset. void vtkImageData::SetDimensions(int i, int j, int k) { this->SetExtent(0, i-1, 0, j-1, 0, k-1); } //---------------------------------------------------------------------------- // Set dimensions of structured points dataset. void vtkImageData::SetDimensions(const int dim[3]) { this->SetExtent(0, dim[0]-1, 0, dim[1]-1, 0, dim[2]-1); } //---------------------------------------------------------------------------- // Convenience function computes the structured coordinates for a point x[3]. // The voxel is specified by the array ijk[3], and the parametric coordinates // in the cell are specified with pcoords[3]. The function returns a 0 if the // point x is outside of the volume, and a 1 if inside the volume. int vtkImageData::ComputeStructuredCoordinates( const double x[3], int ijk[3], double pcoords[3], const int* extent, const double* spacing, const double* origin, const double* bounds) { // tolerance is needed for 2D data (this is squared tolerance) const double tol2 = 1e-12; // // Compute the ijk location // int isInBounds = 1; for (int i = 0; i < 3; i++) { double d = x[i] - origin[i]; double doubleLoc = d / spacing[i]; // Floor for negative indexes. ijk[i] = vtkMath::Floor(doubleLoc); pcoords[i] = doubleLoc - static_cast(ijk[i]); int tmpInBounds = 0; int minExt = extent[i*2]; int maxExt = extent[i*2 + 1]; // check if data is one pixel thick if ( minExt == maxExt ) { double dist = x[i] - bounds[2*i]; if (dist*dist <= spacing[i]*spacing[i]*tol2) { pcoords[i] = 0.0; ijk[i] = minExt; tmpInBounds = 1; } } // low boundary check else if ( ijk[i] < minExt) { if ( (spacing[i] >= 0 && x[i] >= bounds[i*2]) || (spacing[i] < 0 && x[i] <= bounds[i*2 + 1]) ) { pcoords[i] = 0.0; ijk[i] = minExt; tmpInBounds = 1; } } // high boundary check else if ( ijk[i] >= maxExt ) { if ( (spacing[i] >= 0 && x[i] <= bounds[i*2 + 1]) || (spacing[i] < 0 && x[i] >= bounds[i*2]) ) { // make sure index is within the allowed cell index range pcoords[i] = 1.0; ijk[i] = maxExt - 1; tmpInBounds = 1; } } // else index is definitely within bounds else { tmpInBounds = 1; } // clear isInBounds if out of bounds for this dimension isInBounds = (isInBounds & tmpInBounds); } return isInBounds; } //---------------------------------------------------------------------------- int vtkImageData::ComputeStructuredCoordinates(const double x[3], int ijk[3], double pcoords[3]) { return ComputeStructuredCoordinates(x,ijk,pcoords,this->Extent, this->Spacing, this->Origin, this->GetBounds()); } //---------------------------------------------------------------------------- void vtkImageData::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); int idx; const int *dims = this->GetDimensions(); const int* extent = this->Extent; os << indent << "Spacing: (" << this->Spacing[0] << ", " << this->Spacing[1] << ", " << this->Spacing[2] << ")\n"; os << indent << "Origin: (" << this->Origin[0] << ", " << this->Origin[1] << ", " << this->Origin[2] << ")\n"; os << indent << "Dimensions: (" << dims[0] << ", " << dims[1] << ", " << dims[2] << ")\n"; os << indent << "Increments: (" << this->Increments[0] << ", " << this->Increments[1] << ", " << this->Increments[2] << ")\n"; os << indent << "Extent: (" << extent[0]; for (idx = 1; idx < 6; ++idx) { os << ", " << extent[idx]; } os << ")\n"; } //---------------------------------------------------------------------------- void vtkImageData::SetNumberOfScalarComponents(int num, vtkInformation* meta_data) { vtkDataObject::SetPointDataActiveScalarInfo(meta_data, -1, num); } //---------------------------------------------------------------------------- bool vtkImageData::HasNumberOfScalarComponents(vtkInformation* meta_data) { vtkInformation *scalarInfo = vtkDataObject::GetActiveFieldInformation( meta_data, FIELD_ASSOCIATION_POINTS, vtkDataSetAttributes::SCALARS); if (!scalarInfo) { return false; } return scalarInfo->Has(FIELD_NUMBER_OF_COMPONENTS()) != 0; } //---------------------------------------------------------------------------- int vtkImageData::GetNumberOfScalarComponents(vtkInformation* meta_data) { vtkInformation *scalarInfo = vtkDataObject::GetActiveFieldInformation( meta_data, FIELD_ASSOCIATION_POINTS, vtkDataSetAttributes::SCALARS); if (scalarInfo && scalarInfo->Has(FIELD_NUMBER_OF_COMPONENTS())) { return scalarInfo->Get( FIELD_NUMBER_OF_COMPONENTS() ); } return 1; } //---------------------------------------------------------------------------- int vtkImageData::GetNumberOfScalarComponents() { vtkDataArray* scalars = this->GetPointData()->GetScalars(); if (scalars) { return scalars->GetNumberOfComponents(); } return 1; } //---------------------------------------------------------------------------- vtkIdType *vtkImageData::GetIncrements() { // Make sure the increments are up to date. The filter bypass and update // mechanism make it tricky to update the increments anywhere other than here this->ComputeIncrements(); return this->Increments; } //---------------------------------------------------------------------------- vtkIdType *vtkImageData::GetIncrements(vtkDataArray *scalars) { // Make sure the increments are up to date. The filter bypass and update // mechanism make it tricky to update the increments anywhere other than here this->ComputeIncrements(scalars); return this->Increments; } //---------------------------------------------------------------------------- void vtkImageData::GetIncrements(vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ) { vtkIdType inc[3]; this->ComputeIncrements(inc); incX = inc[0]; incY = inc[1]; incZ = inc[2]; } //---------------------------------------------------------------------------- void vtkImageData::GetIncrements(vtkDataArray *scalars, vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ) { vtkIdType inc[3]; this->ComputeIncrements(scalars, inc); incX = inc[0]; incY = inc[1]; incZ = inc[2]; } //---------------------------------------------------------------------------- void vtkImageData::GetIncrements(vtkIdType inc[3]) { this->ComputeIncrements(inc); } //---------------------------------------------------------------------------- void vtkImageData::GetIncrements(vtkDataArray* vtkNotUsed(scalars), vtkIdType inc[3]) { this->ComputeIncrements(inc); } //---------------------------------------------------------------------------- void vtkImageData::GetContinuousIncrements(int extent[6], vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ) { this->GetContinuousIncrements(this->GetPointData()->GetScalars(), extent, incX, incY, incZ); } //---------------------------------------------------------------------------- void vtkImageData::GetContinuousIncrements(vtkDataArray *scalars, int extent[6], vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ) { int e0, e1, e2, e3; incX = 0; const int* selfExtent = this->Extent; e0 = extent[0]; if (e0 < selfExtent[0]) { e0 = selfExtent[0]; } e1 = extent[1]; if (e1 > selfExtent[1]) { e1 = selfExtent[1]; } e2 = extent[2]; if (e2 < selfExtent[2]) { e2 = selfExtent[2]; } e3 = extent[3]; if (e3 > selfExtent[3]) { e3 = selfExtent[3]; } // Make sure the increments are up to date vtkIdType inc[3]; this->ComputeIncrements(scalars, inc); incY = inc[1] - (e1 - e0 + 1)*inc[0]; incZ = inc[2] - (e3 - e2 + 1)*inc[1]; } //---------------------------------------------------------------------------- // This method computes the increments from the MemoryOrder and the extent. // This version assumes we are using the Active Scalars void vtkImageData::ComputeIncrements(vtkIdType inc[3]) { this->ComputeIncrements(this->GetPointData()->GetScalars(), inc); } //---------------------------------------------------------------------------- // This method computes the increments from the MemoryOrder and the extent. void vtkImageData::ComputeIncrements(vtkDataArray *scalars, vtkIdType inc[3]) { if (!scalars) { vtkErrorMacro("No Scalar Field has been specified - assuming 1 component!"); this->ComputeIncrements(1, inc); } else { this->ComputeIncrements(scalars->GetNumberOfComponents(), inc); } } //---------------------------------------------------------------------------- // This method computes the increments from the MemoryOrder and the extent. void vtkImageData::ComputeIncrements(int numberOfComponents, vtkIdType inc[3]) { int idx; vtkIdType incr = numberOfComponents; const int* extent = this->Extent; for (idx = 0; idx < 3; ++idx) { inc[idx] = incr; incr *= (extent[idx*2+1] - extent[idx*2] + 1); } } //---------------------------------------------------------------------------- void vtkImageData::CopyOriginAndSpacingFromPipeline(vtkInformation* info) { // Copy origin and spacing from pipeline information to the internal // copies. if(info->Has(SPACING())) { this->SetSpacing(info->Get(SPACING())); } if(info->Has(ORIGIN())) { this->SetOrigin(info->Get(ORIGIN())); } } //---------------------------------------------------------------------------- template void vtkImageDataConvertScalar(TIn* in, TOut* out) { *out = static_cast(*in); } //---------------------------------------------------------------------------- double vtkImageData::GetScalarComponentAsDouble(int x, int y, int z, int comp) { // Check the component index. if(comp < 0 || comp >= this->GetNumberOfScalarComponents()) { vtkErrorMacro("Bad component index " << comp); return 0.0; } // Get a pointer to the scalar tuple. void* ptr = this->GetScalarPointer(x, y, z); if(!ptr) { // An error message was already generated by GetScalarPointer. return 0.0; } double result = 0.0; // Convert the scalar type. int scalarType = this->GetPointData()->GetScalars()->GetDataType(); switch (scalarType) { vtkTemplateMacro(vtkImageDataConvertScalar(static_cast(ptr)+comp, &result)); default: { vtkErrorMacro("Unknown Scalar type " << scalarType); } } return result; } //---------------------------------------------------------------------------- void vtkImageData::SetScalarComponentFromDouble(int x, int y, int z, int comp, double value) { // Check the component index. if(comp < 0 || comp >= this->GetNumberOfScalarComponents()) { vtkErrorMacro("Bad component index " << comp); return; } // Get a pointer to the scalar tuple. void* ptr = this->GetScalarPointer(x, y, z); if(!ptr) { // An error message was already generated by GetScalarPointer. return; } // Convert the scalar type. int scalarType = this->GetPointData()->GetScalars()->GetDataType(); switch (scalarType) { vtkTemplateMacro(vtkImageDataConvertScalar( &value, static_cast(ptr)+comp)); default: { vtkErrorMacro("Unknown Scalar type " << scalarType); } } } //---------------------------------------------------------------------------- float vtkImageData::GetScalarComponentAsFloat(int x, int y, int z, int comp) { return this->GetScalarComponentAsDouble(x, y, z, comp); } //---------------------------------------------------------------------------- void vtkImageData::SetScalarComponentFromFloat(int x, int y, int z, int comp, float value) { this->SetScalarComponentFromDouble(x, y, z, comp, value); } //---------------------------------------------------------------------------- // This Method returns a pointer to a location in the vtkImageData. // Coordinates are in pixel units and are relative to the whole // image origin. void *vtkImageData::GetScalarPointer(int x, int y, int z) { int tmp[3]; tmp[0] = x; tmp[1] = y; tmp[2] = z; return this->GetScalarPointer(tmp); } //---------------------------------------------------------------------------- // This Method returns a pointer to a location in the vtkImageData. // Coordinates are in pixel units and are relative to the whole // image origin. void *vtkImageData::GetScalarPointerForExtent(int extent[6]) { int tmp[3]; tmp[0] = extent[0]; tmp[1] = extent[2]; tmp[2] = extent[4]; return this->GetScalarPointer(tmp); } //---------------------------------------------------------------------------- void *vtkImageData::GetScalarPointer(int coordinate[3]) { vtkDataArray *scalars = this->GetPointData()->GetScalars(); // Make sure the array has been allocated. if (scalars == nullptr) { //vtkDebugMacro("Allocating scalars in ImageData"); //abort(); //this->AllocateScalars(); //scalars = this->PointData->GetScalars(); return nullptr; } const int* extent = this->Extent; // error checking: since most access will be from pointer arithmetic. // this should not waste much time. for (int idx = 0; idx < 3; ++idx) { if (coordinate[idx] < extent[idx*2] || coordinate[idx] > extent[idx*2+1]) { vtkErrorMacro(<< "GetScalarPointer: Pixel (" << coordinate[0] << ", " << coordinate[1] << ", " << coordinate[2] << ") not in memory.\n Current extent= (" << extent[0] << ", " << extent[1] << ", " << extent[2] << ", " << extent[3] << ", " << extent[4] << ", " << extent[5] << ")"); return nullptr; } } return this->GetArrayPointer(scalars, coordinate); } //---------------------------------------------------------------------------- // This method returns a pointer to the origin of the vtkImageData. void *vtkImageData::GetScalarPointer() { if (this->PointData->GetScalars() == nullptr) { //vtkDebugMacro("Allocating scalars in ImageData"); //abort(); //this->AllocateScalars(); return nullptr; } return this->PointData->GetScalars()->GetVoidPointer(0); } //---------------------------------------------------------------------------- void vtkImageData::SetScalarType(int type, vtkInformation* meta_data) { vtkDataObject::SetPointDataActiveScalarInfo(meta_data, type, -1); } //---------------------------------------------------------------------------- int vtkImageData::GetScalarType() { vtkDataArray* scalars = this->GetPointData()->GetScalars(); if (!scalars) { return VTK_DOUBLE; } return scalars->GetDataType(); } //---------------------------------------------------------------------------- bool vtkImageData::HasScalarType(vtkInformation* meta_data) { vtkInformation *scalarInfo = vtkDataObject::GetActiveFieldInformation( meta_data, FIELD_ASSOCIATION_POINTS, vtkDataSetAttributes::SCALARS); if (!scalarInfo) { return false; } return scalarInfo->Has( FIELD_ARRAY_TYPE() ) != 0; } //---------------------------------------------------------------------------- int vtkImageData::GetScalarType(vtkInformation* meta_data) { vtkInformation *scalarInfo = vtkDataObject::GetActiveFieldInformation( meta_data, FIELD_ASSOCIATION_POINTS, vtkDataSetAttributes::SCALARS); if (scalarInfo) { return scalarInfo->Get( FIELD_ARRAY_TYPE() ); } return VTK_DOUBLE; } //---------------------------------------------------------------------------- void vtkImageData::AllocateScalars(vtkInformation* pipeline_info) { int newType = VTK_DOUBLE; int newNumComp = 1; if(pipeline_info) { vtkInformation *scalarInfo = vtkDataObject::GetActiveFieldInformation( pipeline_info, FIELD_ASSOCIATION_POINTS, vtkDataSetAttributes::SCALARS); if (scalarInfo) { newType = scalarInfo->Get( FIELD_ARRAY_TYPE() ); if ( scalarInfo->Has(FIELD_NUMBER_OF_COMPONENTS()) ) { newNumComp = scalarInfo->Get( FIELD_NUMBER_OF_COMPONENTS() ); } } } this->AllocateScalars(newType, newNumComp); } //---------------------------------------------------------------------------- void vtkImageData::AllocateScalars(int dataType, int numComponents) { vtkDataArray *scalars; // if the scalar type has not been set then we have a problem if (dataType == VTK_VOID) { vtkErrorMacro("Attempt to allocate scalars before scalar type was set!."); return; } const int* extent = this->Extent; // Use vtkIdType to avoid overflow on large images vtkIdType dims[3]; dims[0] = extent[1] - extent[0] + 1; dims[1] = extent[3] - extent[2] + 1; dims[2] = extent[5] - extent[4] + 1; vtkIdType imageSize = dims[0]*dims[1]*dims[2]; // if we currently have scalars then just adjust the size scalars = this->PointData->GetScalars(); if (scalars && scalars->GetDataType() == dataType && scalars->GetReferenceCount() == 1) { scalars->SetNumberOfComponents(numComponents); scalars->SetNumberOfTuples(imageSize); // Since the execute method will be modifying the scalars // directly. scalars->Modified(); return; } // allocate the new scalars scalars = vtkDataArray::CreateDataArray(dataType); scalars->SetNumberOfComponents(numComponents); scalars->SetName("ImageScalars"); // allocate enough memory scalars->SetNumberOfTuples(imageSize); this->PointData->SetScalars(scalars); scalars->Delete(); } //---------------------------------------------------------------------------- int vtkImageData::GetScalarSize(vtkInformation* meta_data) { return vtkDataArray::GetDataTypeSize(this->GetScalarType(meta_data)); } int vtkImageData::GetScalarSize() { vtkDataArray* scalars = this->GetPointData()->GetScalars(); if (!scalars) { return vtkDataArray::GetDataTypeSize(VTK_DOUBLE); } return vtkDataArray::GetDataTypeSize(scalars->GetDataType()); } //---------------------------------------------------------------------------- // This templated function executes the filter for any type of data. template void vtkImageDataCastExecute(vtkImageData *inData, IT *inPtr, vtkImageData *outData, OT *outPtr, int outExt[6]) { int idxR, idxY, idxZ; int maxY, maxZ; vtkIdType inIncX, inIncY, inIncZ; vtkIdType outIncX, outIncY, outIncZ; int rowLength; // find the region to loop over rowLength = (outExt[1] - outExt[0]+1)*inData->GetNumberOfScalarComponents(); maxY = outExt[3] - outExt[2]; maxZ = outExt[5] - outExt[4]; // Get increments to march through data inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ); outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ); // Loop through output pixels for (idxZ = 0; idxZ <= maxZ; idxZ++) { for (idxY = 0; idxY <= maxY; idxY++) { for (idxR = 0; idxR < rowLength; idxR++) { // Pixel operation *outPtr = static_cast(*inPtr); outPtr++; inPtr++; } outPtr += outIncY; inPtr += inIncY; } outPtr += outIncZ; inPtr += inIncZ; } } //---------------------------------------------------------------------------- template void vtkImageDataCastExecute(vtkImageData *inData, T *inPtr, vtkImageData *outData, int outExt[6]) { void *outPtr = outData->GetScalarPointerForExtent(outExt); if (outPtr == nullptr) { vtkGenericWarningMacro("Scalars not allocated."); return; } int scalarType = outData->GetPointData()->GetScalars()->GetDataType(); switch (scalarType) { vtkTemplateMacro( vtkImageDataCastExecute(inData, static_cast(inPtr), outData, static_cast(outPtr), outExt) ); default: vtkGenericWarningMacro("Execute: Unknown output ScalarType"); return; } } //---------------------------------------------------------------------------- // This method is passed a input and output region, and executes the filter // algorithm to fill the output from the input. // It just executes a switch statement to call the correct function for // the regions data types. void vtkImageData::CopyAndCastFrom(vtkImageData *inData, int extent[6]) { void *inPtr = inData->GetScalarPointerForExtent(extent); if (inPtr == nullptr) { vtkErrorMacro("Scalars not allocated."); return; } int scalarType = inData->GetPointData()->GetScalars()->GetDataType(); switch (scalarType) { vtkTemplateMacro(vtkImageDataCastExecute(inData, static_cast(inPtr), this, extent) ); default: vtkErrorMacro(<< "Execute: Unknown input ScalarType"); return; } } //---------------------------------------------------------------------------- void vtkImageData::Crop(const int* updateExtent) { // Do nothing for empty datasets: for (int dim = 0; dim < 3; ++dim) { if (this->Extent[2*dim] > this->Extent[2*dim + 1]) { vtkDebugMacro(<<"Refusing to crop empty dataset."); return; } } int nExt[6]; int idxX, idxY, idxZ; int maxX, maxY, maxZ; vtkIdType outId, inId, inIdY, inIdZ, incZ, incY; vtkImageData *newImage; vtkIdType numPts, numCells, tmp; const int* extent = this->Extent; // If extents already match, then we need to do nothing. if (extent[0] == updateExtent[0] && extent[1] == updateExtent[1] && extent[2] == updateExtent[2] && extent[3] == updateExtent[3] && extent[4] == updateExtent[4] && extent[5] == updateExtent[5]) { return; } // Take the intersection of the two extent so that // we are not asking for more than the extent. memcpy(nExt, updateExtent, 6*sizeof(int)); if (nExt[0] < extent[0]) { nExt[0] = extent[0];} if (nExt[1] > extent[1]) { nExt[1] = extent[1];} if (nExt[2] < extent[2]) { nExt[2] = extent[2];} if (nExt[3] > extent[3]) { nExt[3] = extent[3];} if (nExt[4] < extent[4]) { nExt[4] = extent[4];} if (nExt[5] > extent[5]) { nExt[5] = extent[5];} // If the extents are the same just return. if (extent[0] == nExt[0] && extent[1] == nExt[1] && extent[2] == nExt[2] && extent[3] == nExt[3] && extent[4] == nExt[4] && extent[5] == nExt[5]) { vtkDebugMacro("Extents already match."); return; } // How many point/cells. numPts = (nExt[1]-nExt[0]+1)*(nExt[3]-nExt[2]+1)*(nExt[5]-nExt[4]+1); // Conditional are to handle 3d, 2d, and even 1d images. tmp = nExt[1] - nExt[0]; if (tmp <= 0) { tmp = 1; } numCells = tmp; tmp = nExt[3] - nExt[2]; if (tmp <= 0) { tmp = 1; } numCells *= tmp; tmp = nExt[5] - nExt[4]; if (tmp <= 0) { tmp = 1; } numCells *= tmp; // Create a new temporary image. newImage = vtkImageData::New(); newImage->SetExtent(nExt); vtkPointData *npd = newImage->GetPointData(); vtkCellData *ncd = newImage->GetCellData(); npd->CopyAllocate(this->PointData, numPts); ncd->CopyAllocate(this->CellData, numCells); // Loop through outData points incY = extent[1]-extent[0]+1; incZ = (extent[3]-extent[2]+1)*incY; outId = 0; inIdZ = incZ * (nExt[4]-extent[4]) + incY * (nExt[2]-extent[2]) + (nExt[0]-extent[0]); for (idxZ = nExt[4]; idxZ <= nExt[5]; idxZ++) { inIdY = inIdZ; for (idxY = nExt[2]; idxY <= nExt[3]; idxY++) { inId = inIdY; for (idxX = nExt[0]; idxX <= nExt[1]; idxX++) { npd->CopyData( this->PointData, inId, outId); ++inId; ++outId; } inIdY += incY; } inIdZ += incZ; } // Loop through outData cells // Have to handle the 2d and 1d cases. maxX = nExt[1]; maxY = nExt[3]; maxZ = nExt[5]; if (maxX == nExt[0]) { ++maxX; } if (maxY == nExt[2]) { ++maxY; } if (maxZ == nExt[4]) { ++maxZ; } incY = extent[1]-extent[0]; incZ = (extent[3]-extent[2])*incY; outId = 0; inIdZ = incZ * (nExt[4]-extent[4]) + incY * (nExt[2]-extent[2]) + (nExt[0]-extent[0]); for (idxZ = nExt[4]; idxZ < maxZ; idxZ++) { inIdY = inIdZ; for (idxY = nExt[2]; idxY < maxY; idxY++) { inId = inIdY; for (idxX = nExt[0]; idxX < maxX; idxX++) { ncd->CopyData(this->CellData, inId, outId); ++inId; ++outId; } inIdY += incY; } inIdZ += incZ; } this->PointData->ShallowCopy(npd); this->CellData->ShallowCopy(ncd); this->SetExtent(nExt); newImage->Delete(); } //---------------------------------------------------------------------------- double vtkImageData::GetScalarTypeMin(vtkInformation* meta_data) { return vtkDataArray::GetDataTypeMin(this->GetScalarType(meta_data)); } //---------------------------------------------------------------------------- double vtkImageData::GetScalarTypeMin() { return vtkDataArray::GetDataTypeMin(this->GetScalarType()); } //---------------------------------------------------------------------------- double vtkImageData::GetScalarTypeMax(vtkInformation* meta_data) { return vtkDataArray::GetDataTypeMax(this->GetScalarType(meta_data)); } //---------------------------------------------------------------------------- double vtkImageData::GetScalarTypeMax() { return vtkDataArray::GetDataTypeMax(this->GetScalarType()); } //---------------------------------------------------------------------------- void vtkImageData::SetExtent(int x1, int x2, int y1, int y2, int z1, int z2) { int ext[6]; ext[0] = x1; ext[1] = x2; ext[2] = y1; ext[3] = y2; ext[4] = z1; ext[5] = z2; this->SetExtent(ext); } //---------------------------------------------------------------------------- void vtkImageData::SetDataDescription(int desc) { if (desc == this->DataDescription) { return; } this->DataDescription = desc; if (this->Vertex) { this->Vertex->Delete(); this->Vertex = nullptr; } if (this->Line) { this->Line->Delete(); this->Line = nullptr; } if (this->Pixel) { this->Pixel->Delete(); this->Pixel = nullptr; } if (this->Voxel) { this->Voxel->Delete(); this->Voxel = nullptr; } switch (this->DataDescription) { case VTK_SINGLE_POINT: this->Vertex = vtkVertex::New(); break; case VTK_X_LINE: case VTK_Y_LINE: case VTK_Z_LINE: this->Line = vtkLine::New(); break; case VTK_XY_PLANE: case VTK_YZ_PLANE: case VTK_XZ_PLANE: this->Pixel = vtkPixel::New(); break; case VTK_XYZ_GRID: this->Voxel = vtkVoxel::New();; break; } } //---------------------------------------------------------------------------- void vtkImageData::SetExtent(int *extent) { int description; description = vtkStructuredData::SetExtent(extent, this->Extent); if ( description < 0 ) //improperly specified { vtkErrorMacro (<< "Bad Extent, retaining previous values"); } if (description == VTK_UNCHANGED) { return; } this->SetDataDescription(description); this->Modified(); } //---------------------------------------------------------------------------- int *vtkImageData::GetDimensions() { this->GetDimensions(this->Dimensions); return this->Dimensions; } //---------------------------------------------------------------------------- void vtkImageData::GetDimensions(int *dOut) { const int* extent = this->Extent; dOut[0] = extent[1] - extent[0] + 1; dOut[1] = extent[3] - extent[2] + 1; dOut[2] = extent[5] - extent[4] + 1; } //---------------------------------------------------------------------------- void vtkImageData::SetAxisUpdateExtent(int idx, int min, int max, const int* updateExtent, int* axisUpdateExtent) { if (idx > 2) { vtkWarningMacro("illegal axis!"); return; } memcpy(axisUpdateExtent, updateExtent, 6*sizeof(int)); if (axisUpdateExtent[idx*2] != min) { axisUpdateExtent[idx*2] = min; } if (axisUpdateExtent[idx*2+1] != max) { axisUpdateExtent[idx*2+1] = max; } } //---------------------------------------------------------------------------- void vtkImageData::GetAxisUpdateExtent(int idx, int &min, int &max, const int* updateExtent) { if (idx > 2) { vtkWarningMacro("illegal axis!"); return; } min = updateExtent[idx*2]; max = updateExtent[idx*2+1]; } //---------------------------------------------------------------------------- unsigned long vtkImageData::GetActualMemorySize() { return this->vtkDataSet::GetActualMemorySize(); } //---------------------------------------------------------------------------- void vtkImageData::ShallowCopy(vtkDataObject *dataObject) { vtkImageData *imageData = vtkImageData::SafeDownCast(dataObject); if ( imageData != nullptr ) { this->InternalImageDataCopy(imageData); } // Do superclass this->vtkDataSet::ShallowCopy(dataObject); } //---------------------------------------------------------------------------- void vtkImageData::DeepCopy(vtkDataObject *dataObject) { vtkImageData *imageData = vtkImageData::SafeDownCast(dataObject); if ( imageData != nullptr ) { this->InternalImageDataCopy(imageData); } // Do superclass this->vtkDataSet::DeepCopy(dataObject); } //---------------------------------------------------------------------------- // This copies all the local variables (but not objects). void vtkImageData::InternalImageDataCopy(vtkImageData *src) { int idx; //this->SetScalarType(src->GetScalarType()); //this->SetNumberOfScalarComponents(src->GetNumberOfScalarComponents()); for (idx = 0; idx < 3; ++idx) { this->Dimensions[idx] = src->Dimensions[idx]; this->Increments[idx] = src->Increments[idx]; this->Origin[idx] = src->Origin[idx]; this->Spacing[idx] = src->Spacing[idx]; } this->SetExtent(src->GetExtent()); } //---------------------------------------------------------------------------- vtkIdType vtkImageData::GetNumberOfCells() { vtkIdType nCells=1; int i; const int* extent = this->Extent; vtkIdType dims[3]; dims[0] = extent[1] - extent[0] + 1; dims[1] = extent[3] - extent[2] + 1; dims[2] = extent[5] - extent[4] + 1; for (i=0; i<3; i++) { if (dims[i] == 0) { return 0; } if (dims[i] > 1) { nCells *= (dims[i]-1); } } return nCells; } //============================================================================ // Starting to make some more general methods that deal with any array // (not just scalars). //============================================================================ //---------------------------------------------------------------------------- // This Method returns a pointer to a location in the vtkImageData. // Coordinates are in pixel units and are relative to the whole // image origin. void vtkImageData::GetArrayIncrements(vtkDataArray* array, vtkIdType increments[3]) { const int* extent = this->Extent; // We could store tuple increments and just // multiply by the number of components... increments[0] = array->GetNumberOfComponents(); increments[1] = increments[0] * (extent[1]-extent[0]+1); increments[2] = increments[1] * (extent[3]-extent[2]+1); } //---------------------------------------------------------------------------- void *vtkImageData::GetArrayPointerForExtent(vtkDataArray* array, int extent[6]) { int tmp[3]; tmp[0] = extent[0]; tmp[1] = extent[2]; tmp[2] = extent[4]; return this->GetArrayPointer(array, tmp); } //---------------------------------------------------------------------------- // This Method returns a pointer to a location in the vtkImageData. // Coordinates are in pixel units and are relative to the whole // image origin. void *vtkImageData::GetArrayPointer(vtkDataArray* array, int coordinate[3]) { vtkIdType incs[3]; vtkIdType idx; if (array == nullptr) { return nullptr; } const int* extent = this->Extent; // error checking: since most acceses will be from pointer arithmetic. // this should not waste much time. for (idx = 0; idx < 3; ++idx) { if (coordinate[idx] < extent[idx*2] || coordinate[idx] > extent[idx*2+1]) { vtkErrorMacro(<< "GetPointer: Pixel (" << coordinate[0] << ", " << coordinate[1] << ", " << coordinate[2] << ") not in current extent: (" << extent[0] << ", " << extent[1] << ", " << extent[2] << ", " << extent[3] << ", " << extent[4] << ", " << extent[5] << ")"); return nullptr; } } // compute the index of the vector. this->GetArrayIncrements(array, incs); idx = ((coordinate[0] - extent[0]) * incs[0] + (coordinate[1] - extent[2]) * incs[1] + (coordinate[2] - extent[4]) * incs[2]); // I could check to see if the array has the correct number // of tuples for the extent, but that would be an extra multiply. if (idx < 0 || idx > array->GetMaxId()) { vtkErrorMacro("Coordinate (" << coordinate[0] << ", " << coordinate[1] << ", " << coordinate[2] << ") out side of array (max = " << array->GetMaxId()); return nullptr; } return array->GetVoidPointer(idx); } //---------------------------------------------------------------------------- void vtkImageData::ComputeInternalExtent(int *intExt, int *tgtExt, int *bnds) { int i; const int* extent = this->Extent; for (i = 0; i < 3; ++i) { intExt[i*2] = tgtExt[i*2]; if (intExt[i*2] - bnds[i*2] < extent[i*2]) { intExt[i*2] = extent[i*2] + bnds[i*2]; } intExt[i*2+1] = tgtExt[i*2+1]; if (intExt[i*2+1] + bnds[i*2+1] > extent[i*2+1]) { intExt[i*2+1] = extent[i*2+1] - bnds[i*2+1]; } } } //---------------------------------------------------------------------------- vtkImageData* vtkImageData::GetData(vtkInformation* info) { return info? vtkImageData::SafeDownCast(info->Get(DATA_OBJECT())) : nullptr; } //---------------------------------------------------------------------------- vtkImageData* vtkImageData::GetData(vtkInformationVector* v, int i) { return vtkImageData::GetData(v->GetInformationObject(i)); }