/*========================================================================= Program: Visualization Toolkit Module: vtkLagrangeQuadrilateral.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkLagrangeQuadrilateral.h" #include "vtkCellData.h" #include "vtkDoubleArray.h" #include "vtkIdList.h" #include "vtkLagrangeCurve.h" #include "vtkLagrangeInterpolation.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPoints.h" #include "vtkQuad.h" #include "vtkTriangle.h" #include "vtkVector.h" #include "vtkVectorOperators.h" vtkStandardNewMacro(vtkLagrangeQuadrilateral); vtkLagrangeQuadrilateral::vtkLagrangeQuadrilateral() { this->Approx = nullptr; this->Order[0] = this->Order[1] = this->Order[2] = 1; this->Points->SetNumberOfPoints(4); this->PointIds->SetNumberOfIds(4); for (int i = 0; i < 4; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,-1); } } vtkLagrangeQuadrilateral::~vtkLagrangeQuadrilateral() { } void vtkLagrangeQuadrilateral::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Order: " << this->GetOrder(0) << "\n"; if (this->PointParametricCoordinates) { os << indent << "PointParametricCoordinates: " << this->PointParametricCoordinates->GetNumberOfPoints() << " entries\n"; } os << indent << "Approx: " << this->Approx << "\n"; } vtkCell* vtkLagrangeQuadrilateral::GetEdge(int edgeId) { vtkLagrangeCurve* result = this->EdgeCell.GetPointer(); const int* order = this->GetOrder(); // Note in calls below: quad has same edges as first 4 of hex int oi = vtkLagrangeInterpolation::GetVaryingParameterOfHexEdge(edgeId); vtkVector2i eidx = vtkLagrangeInterpolation::GetPointIndicesBoundingHexEdge(edgeId); vtkIdType npts = order[oi] + 1; int sn = 0; result->Points->SetNumberOfPoints(npts); result->PointIds->SetNumberOfIds(npts); for (int i = 0; i < 2; ++i, ++sn) { result->Points->SetPoint(sn, this->Points->GetPoint(eidx[i])); result->PointIds->SetId(sn, this->PointIds->GetId(eidx[i])); } // Now add edge-interior points in axis order: int offset = 4; for (int ee = 0; ee < edgeId; ++ee) { offset += order[ee % 2 == 0 ? 0 : 1] - 1; } for (int jj = 0; jj < order[oi] - 1; ++jj, ++sn) { result->Points->SetPoint(sn, this->Points->GetPoint(offset + jj)); result->PointIds->SetId(sn, this->PointIds->GetId(offset + jj)); } return result; } void vtkLagrangeQuadrilateral::Initialize() { } int vtkLagrangeQuadrilateral::CellBoundary( int vtkNotUsed(subId), double pcoords[3], vtkIdList* pts) { double t1=pcoords[0]-pcoords[1]; double t2=1.0-pcoords[0]-pcoords[1]; pts->SetNumberOfIds(2); // compare against two lines in parametric space that divide element // into four pieces. if ( t1 >= 0.0 && t2 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); } else if ( t1 >= 0.0 && t2 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(1)); pts->SetId(1,this->PointIds->GetId(2)); } else if ( t1 < 0.0 && t2 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(2)); pts->SetId(1,this->PointIds->GetId(3)); } else //( t1 < 0.0 && t2 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(3)); pts->SetId(1,this->PointIds->GetId(0)); } if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 ) { return 0; } else { return 1; } } int vtkLagrangeQuadrilateral::EvaluatePosition( double* x, double* closestPoint, int& subId, double pcoords[3], double& minDist2, double* weights) { int result = 0; int dummySubId; double linearWeights[4]; double tmpDist2; vtkVector3d params; vtkVector3d tmpClosestPt; minDist2 = VTK_DOUBLE_MAX; vtkIdType nquad = vtkLagrangeInterpolation::NumberOfIntervals<2>(this->GetOrder()); for (int subCell = 0; subCell < nquad; ++subCell) { vtkQuad* approx = this->GetApproximateQuad(subCell, nullptr, nullptr); int stat = approx->EvaluatePosition(x, tmpClosestPt.GetData(), dummySubId, params.GetData(), tmpDist2, linearWeights); if (stat != -1 && tmpDist2 < minDist2) { result = stat; subId = subCell; minDist2 = tmpDist2; for (int ii = 0; ii < 3; ++ii) { pcoords[ii] = params[ii]; // We will translate the winning parameter values later. if (closestPoint) { closestPoint[ii] = tmpClosestPt[ii]; } } } } if (result != -1) { this->TransformApproxToCellParams(subId, pcoords); if (closestPoint) { this->EvaluateLocation(dummySubId, pcoords, closestPoint, weights); } else { this->InterpolateFunctions(pcoords, weights); } } return result; } void vtkLagrangeQuadrilateral::EvaluateLocation( int& subId, double pcoords[3], double x[3], double* weights) { subId = 0; // TODO: Should this be -1? this->InterpolateFunctions(pcoords, weights); double p[3]; x[0] = x[1] = x[2] = 0.; vtkIdType nPoints = this->GetPoints()->GetNumberOfPoints(); for (vtkIdType idx = 0; idx < nPoints; ++idx) { this->Points->GetPoint(idx, p); for (vtkIdType jdx = 0; jdx < 3; ++jdx) { x[jdx] += p[jdx] * weights[idx]; } } } void vtkLagrangeQuadrilateral::Contour( double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { this->PrepareApproxData(inPd, inCd, cellId, cellScalars); // writes to this->{CellScalars, ApproxPD, ApproxCD} vtkIdType nquad = vtkLagrangeInterpolation::NumberOfIntervals<2>(this->GetOrder()); for (int i = 0; i < nquad; ++i) { vtkQuad* approx = this->GetApproximateQuad(i, this->CellScalars.GetPointer(), this->Scalars.GetPointer()); approx->Contour( value, this->Scalars.GetPointer(), locator, verts, lines, polys, this->ApproxPD, outPd, this->ApproxCD, cellId, outCd); } } void vtkLagrangeQuadrilateral::Clip( double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { this->PrepareApproxData(inPd, inCd, cellId, cellScalars); // writes to this->{CellScalars, ApproxPD, ApproxCD} vtkIdType nquad = vtkLagrangeInterpolation::NumberOfIntervals<2>(this->GetOrder()); for (int i = 0; i < nquad; ++i) { vtkQuad* approx = this->GetApproximateQuad(i, this->CellScalars.GetPointer(), this->Scalars.GetPointer()); approx->Clip( value, this->Scalars.GetPointer(), locator, polys, this->ApproxPD, outPd, this->ApproxCD, cellId, outCd, insideOut); } } int vtkLagrangeQuadrilateral::IntersectWithLine( double* p1, double* p2, double tol, double& t, double* x, double* pcoords, int& subId) { vtkIdType nquad = vtkLagrangeInterpolation::NumberOfIntervals<2>(this->GetOrder()); double tFirst = VTK_DOUBLE_MAX; bool intersection = false; vtkVector3d tmpX; vtkVector3d tmpP; int tmpId; for (int i = 0; i < nquad; ++i) { vtkQuad* approx = this->GetApproximateQuad(i); if (approx->IntersectWithLine(p1, p2, tol, t, tmpX.GetData(), tmpP.GetData(), tmpId)) { // Record the point closest to p1 in the direction of p2 unless there is no other intersection, // in which case we will report a point "before" p1 (further from p2 than p1). if (!intersection || (t >= 0 && (t < tFirst || tFirst < 0))) { tFirst = t; subId = i; for (int ii = 0; ii < 3; ++ii) { x[ii] = tmpX[ii]; pcoords[ii] = tmpP[ii]; // Translate this after we're sure it's the closest hit. } } intersection = true; } } if (intersection) { intersection &= this->TransformApproxToCellParams(subId, pcoords); t = tFirst; } return intersection ? 1 : 0; } int vtkLagrangeQuadrilateral::Triangulate( int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts) { ptIds->Reset(); pts->Reset(); vtkIdType nquad = vtkLagrangeInterpolation::NumberOfIntervals<2>(this->GetOrder()); vtkVector3i ijk; for (int i = 0; i < nquad; ++i) { vtkQuad* approx = this->GetApproximateQuad(i); if (!this->SubCellCoordinatesFromId(ijk, i)) { continue; } if (approx->Triangulate( (ijk[0] + ijk[1] + ijk[2]) % 2, this->TmpIds.GetPointer(), this->TmpPts.GetPointer())) { // Sigh. Triangulate methods all reset their points/ids // so we must copy them to our output. vtkIdType np = this->TmpPts->GetNumberOfPoints(); vtkIdType ni = this->TmpIds->GetNumberOfIds(); for (vtkIdType ii = 0; ii < np; ++ii) { pts->InsertNextPoint(this->TmpPts->GetPoint(ii)); } for (vtkIdType ii = 0; ii < ni; ++ii) { ptIds->InsertNextId(this->TmpIds->GetId(ii)); } } } return 1; } void vtkLagrangeQuadrilateral::Derivatives( int vtkNotUsed(subId), double vtkNotUsed(pcoords)[3], double* vtkNotUsed(values), int vtkNotUsed(dim), double* vtkNotUsed(derivs)) { // TODO: Fill me in? return; } double* vtkLagrangeQuadrilateral::GetParametricCoords() { if (!this->PointParametricCoordinates) { this->PointParametricCoordinates = vtkSmartPointer::New(); this->PointParametricCoordinates->SetDataTypeToDouble(); } // Ensure Order is up-to-date and check that current point size matches: if (static_cast(this->PointParametricCoordinates->GetNumberOfPoints()) != this->GetOrder(2)) { this->PointParametricCoordinates->Initialize(); vtkLagrangeInterpolation::AppendQuadrilateralCollocationPoints( this->PointParametricCoordinates, this->Order); } return vtkDoubleArray::SafeDownCast( this->PointParametricCoordinates->GetData())->GetPointer(0); } double vtkLagrangeQuadrilateral::GetParametricDistance(double pcoords[3]) { double pDist, pDistMax = 0.0; for (int ii = 0; ii < 2; ++ii) { pDist = (pcoords[ii] < 0. ? -pcoords[ii] : (pcoords[ii] > 1. ? pcoords[ii] - 1. : 0.)); if ( pDist > pDistMax ) { pDistMax = pDist; } } // The quadrilateral's 3rd parametric coordinate should always be 0: if (pcoords[2] != 0.0 && (pDist = std::abs(pcoords[2])) > pDistMax) { pDistMax = pDist; } return pDistMax; } const int* vtkLagrangeQuadrilateral::GetOrder() { // FIXME: The interpolation routines can handle different order along each axis // but we cannot infer the order from the number of points in that case. // This method currrently assumes quads are of the same order on each axis. // We populate the Order array for use with the interpolation class. vtkIdType npts = this->Points->GetNumberOfPoints(); if (this->Order[2] != npts) { int pointsPerAxis = static_cast(ceil(pow(npts, 1./2.))); // number of points along each axis for (int i = 0; i < 2; ++i) { this->Order[i] = pointsPerAxis - 1; // order 1 is linear, 2 is quadratic, ... } this->Order[2] = static_cast(npts); this->CellScalars->SetNumberOfTuples(npts); } return this->Order; } void vtkLagrangeQuadrilateral::InterpolateFunctions( double pcoords[3], double* weights) { vtkLagrangeInterpolation::Tensor2ShapeFunctions(this->GetOrder(), pcoords, weights); } void vtkLagrangeQuadrilateral::InterpolateDerivs( double pcoords[3], double* derivs) { vtkLagrangeInterpolation::Tensor2ShapeDerivatives(this->GetOrder(), pcoords, derivs); } /// Return a linear quadrilateral used to approximate a region of the nonlinear quadrilateral. vtkQuad* vtkLagrangeQuadrilateral::GetApprox() { if (!this->Approx) { this->Approx = vtkSmartPointer::New(); this->ApproxPD = vtkSmartPointer::New(); this->ApproxCD = vtkSmartPointer::New(); } return this->Approx.GetPointer(); } /**\brief Prepare point data for use by linear approximating-elements. * * This copies the point data for the current cell into a new point-data * object so that the point ids and scalar ids can match. */ void vtkLagrangeQuadrilateral::PrepareApproxData(vtkPointData* pd, vtkCellData* cd, vtkIdType cellId, vtkDataArray* cellScalars) { this->GetApprox(); // Ensure this->Approx{PD,CD} are non-NULL. this->GetOrder(); // Ensure the order has been updated to match this element. vtkIdType npts = this->Order[2]; vtkIdType nele = this->Order[0] * this->Order[1]; this->ApproxPD->Initialize(); this->ApproxCD->Initialize(); this->ApproxPD->CopyAllOn(); this->ApproxCD->CopyAllOn(); this->ApproxPD->CopyAllocate(pd, npts); this->ApproxCD->CopyAllocate(cd, nele); for (int pp = 0; pp < npts; ++pp) { this->ApproxPD->CopyData(pd, this->PointIds->GetId(pp), pp); this->CellScalars->SetValue(pp, cellScalars->GetTuple1(pp)); } for (int ee = 0; ee < nele; ++ee) { this->ApproxCD->CopyData(cd, cellId, ee); } } /**\brief Populate the linear quadrilateral returned by GetApprox() with point-data from one voxel-like interval of this cell. * * Ensure that you have called GetOrder() before calling this method * so that this->Order is up to date. This method does no checking * before using it to map connectivity-array offsets. */ vtkQuad* vtkLagrangeQuadrilateral::GetApproximateQuad( int subId, vtkDataArray* scalarsIn, vtkDataArray* scalarsOut) { vtkQuad* approx = this->GetApprox(); bool doScalars = (scalarsIn && scalarsOut); if (doScalars) { scalarsOut->SetNumberOfTuples(4); } int i, j, k; if (!this->SubCellCoordinatesFromId(i, j, k, subId)) { vtkErrorMacro("Invalid subId " << subId); return nullptr; } // Get the point ids (and optionally scalars) for each of the 4 corners // in the approximating quadrilateral spanned by (i, i+1) x (j, j+1): for (int ic = 0; ic < 4; ++ic) { int corner = this->PointIndexFromIJK( i + ((((ic + 1) / 2) % 2) ? 1 : 0), j + (((ic / 2) % 2) ? 1 : 0), 0); vtkVector3d cp; this->Points->GetPoint(corner, cp.GetData()); approx->Points->SetPoint(ic, cp.GetData()); approx->PointIds->SetId(ic, doScalars ? corner : this->PointIds->GetId(corner)); if (doScalars) { scalarsOut->SetTuple(ic, scalarsIn->GetTuple( corner)); } } return approx; } /// A convenience method; see the overloaded variant for more information. bool vtkLagrangeQuadrilateral::SubCellCoordinatesFromId(vtkVector3i& ijk, int subId) { return this->SubCellCoordinatesFromId(ijk[0], ijk[1], ijk[2], subId); } /**\brief Given an integer specifying an approximating linear quad, compute its IJK coordinate-position in this cell. * * The \a subId specifies the lower-, left-, front-most vertex of the approximating quad. * This sets the ijk coordinates of that point. * * You must have called this->GetOrder() **before** invoking this method so that the order will be up to date. */ bool vtkLagrangeQuadrilateral::SubCellCoordinatesFromId(int& i, int& j, int& k, int subId) { if (subId < 0) { return false; } i = subId % this->Order[0]; j = (subId / this->Order[0]) % this->Order[1]; k = 0; return i + this->Order[0] * j == subId ? true : false; } /**\brief A convenience function to get a connectivity offset from a control-point tuple. * * Ensure that you have called GetOrder() before calling this method * so that this->Order is up to date. This method does no checking * before using it to map connectivity-array offsets. */ int vtkLagrangeQuadrilateral::PointIndexFromIJK(int i, int j, int vtkNotUsed(k)) { return vtkLagrangeQuadrilateral::PointIndexFromIJK(i, j, this->Order); } /**\brief Given (i,j,k) coordinates within the Lagrange quad, return an offset into the local connectivity (PointIds) array. * * The \a order parameter must point to the start of an array of 2 integers. */ int vtkLagrangeQuadrilateral::PointIndexFromIJK(int i, int j, const int* order) { bool ibdy = (i == 0 || i == order[0]); bool jbdy = (j == 0 || j == order[1]); // How many boundaries do we lie on at once? int nbdy = (ibdy ? 1 : 0) + (jbdy ? 1 : 0); if (nbdy == 2) // Vertex DOF { // ijk is a corner node. Return the proper index (somewhere in [0,7]): return (i ? (j ? 2 : 1) : (j ? 3 : 0)); } int offset = 4; if (nbdy == 1) // Edge DOF { if (!ibdy) { // On i axis return (i - 1) + (j ? order[0] - 1 + order[1] - 1 : 0) + offset; } if (!jbdy) { // On j axis return (j - 1) + (i ? order[0] - 1 : 2 * (order[0] - 1) + order[1] - 1) + offset; } } offset += 2 * (order[0] - 1 + order[1] - 1); // nbdy == 0: Face DOF return offset + (i - 1) + (order[0] - 1) * ( (j - 1)); } /**\brief Given the index, \a subCell, of a linear approximating-quad, translate pcoords from that quad into this nonlinear quad. * * You must call this->GetOrder() **before** invoking this method as it assumes * the order is up to date. */ bool vtkLagrangeQuadrilateral::TransformApproxToCellParams(int subCell, double* pcoords) { vtkVector3i ijk; if (!this->SubCellCoordinatesFromId(ijk, subCell)) { return false; } for (int pp = 0; pp < 2; ++pp) { pcoords[pp] = (pcoords[pp] + ijk[pp]) / this->Order[pp]; } pcoords[2] = 0.; return true; }