/*========================================================================= Program: Visualization Toolkit Module: vtkTriQuadraticHexahedron.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkTriQuadraticHexahedron * @brief cell represents a parabolic, 27-node isoparametric hexahedron * * vtkTriQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to * represent a three-dimensional, 27-node isoparametric triquadratic * hexahedron. The interpolation is the standard finite element, triquadratic * isoparametric shape function. The cell includes 8 edge nodes, 12 mid-edge nodes, * 6 mid-face nodes and one mid-volume node. The ordering of the 27 points defining the * cell is point ids (0-7,8-19, 20-25, 26) * where point ids 0-7 are the eight corner vertices of the cube; followed by * twelve midedge nodes (8-19); followed by 6 mid-face nodes (20-25) and the last node (26) * is the mid-volume node. Note that these midedge nodes correspond lie * on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7), * (7,4), (0,4), (1,5), (2,6), (3,7). The mid-surface nodes lies on the faces * defined by (first edge nodes id's, than mid-edge nodes id's): * (0,1,5,4;8,17,12,16), (1,2,6,5;9,18,13,17), (2,3,7,6,10,19,14,18), * (3,0,4,7;11,16,15,19), (0,1,2,3;8,9,10,11), (4,5,6,7;12,13,14,15). * The last point lies in the center of the cell (0,1,2,3,4,5,6,7). * * \verbatim * * top * 7--14--6 * | | * 15 25 13 * | | * 4--12--5 * * middle * 19--23--18 * | | * 20 26 21 * | | * 16--22--17 * * bottom * 3--10--2 * | | * 11 24 9 * | | * 0-- 8--1 * * \endverbatim * * * @sa * vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra * vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge * vtkBiQuadraticQuad * * @par Thanks: * Thanks to Soeren Gebbert who developed this class and * integrated it into VTK 5.0. */ #ifndef vtkTriQuadraticHexahedron_h #define vtkTriQuadraticHexahedron_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkNonLinearCell.h" class vtkQuadraticEdge; class vtkBiQuadraticQuad; class vtkHexahedron; class vtkDoubleArray; class VTKCOMMONDATAMODEL_EXPORT vtkTriQuadraticHexahedron : public vtkNonLinearCell { public: static vtkTriQuadraticHexahedron *New (); vtkTypeMacro(vtkTriQuadraticHexahedron,vtkNonLinearCell); void PrintSelf (ostream & os, vtkIndent indent) override; //@{ /** * Implement the vtkCell API. See the vtkCell API for descriptions * of these methods. */ int GetCellType() override { return VTK_TRIQUADRATIC_HEXAHEDRON; } int GetCellDimension() override { return 3; } int GetNumberOfEdges() override { return 12; } int GetNumberOfFaces() override { return 6; } vtkCell *GetEdge (int) override; vtkCell *GetFace (int) override; //@} int CellBoundary (int subId, double pcoords[3], vtkIdList * pts) override; void Contour (double value, vtkDataArray * cellScalars, vtkIncrementalPointLocator * locator, vtkCellArray * verts, vtkCellArray * lines, vtkCellArray * polys, vtkPointData * inPd, vtkPointData * outPd, vtkCellData * inCd, vtkIdType cellId, vtkCellData * outCd) override; int EvaluatePosition (double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; void EvaluateLocation (int &subId, double pcoords[3], double x[3], double *weights) override; int Triangulate (int index, vtkIdList * ptIds, vtkPoints * pts) override; void Derivatives (int subId, double pcoords[3], double *values, int dim, double *derivs) override; double *GetParametricCoords () override; /** * Clip this triquadratic hexahedron using scalar value provided. Like * contouring, except that it cuts the hex to produce linear * tetrahedron. */ void Clip (double value, vtkDataArray * cellScalars, vtkIncrementalPointLocator * locator, vtkCellArray * tetras, vtkPointData * inPd, vtkPointData * outPd, vtkCellData * inCd, vtkIdType cellId, vtkCellData * outCd, int insideOut) override; /** * Line-edge intersection. Intersection has to occur within [0,1] parametric * coordinates and with specified tolerance. */ int IntersectWithLine (double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; /** * @deprecated Replaced by vtkTriQuadraticHexahedron::InterpolateFunctions as of VTK 5.2 */ static void InterpolationFunctions (double pcoords[3], double weights[27]); /** * @deprecated Replaced by vtkTriQuadraticHexahedron::InterpolateDerivs as of VTK 5.2 */ static void InterpolationDerivs (double pcoords[3], double derivs[81]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions (double pcoords[3], double weights[27]) override { vtkTriQuadraticHexahedron::InterpolationFunctions(pcoords,weights); } void InterpolateDerivs (double pcoords[3], double derivs[81]) override { vtkTriQuadraticHexahedron::InterpolationDerivs(pcoords,derivs); } //@} //@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. */ static int *GetEdgeArray(int edgeId); static int *GetFaceArray(int faceId); //@} /** * Given parametric coordinates compute inverse Jacobian transformation * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation * function derivatives. */ void JacobianInverse (double pcoords[3], double **inverse, double derivs[81]); protected: vtkTriQuadraticHexahedron (); ~vtkTriQuadraticHexahedron () override; vtkQuadraticEdge *Edge; vtkBiQuadraticQuad *Face; vtkHexahedron *Hex; vtkDoubleArray *Scalars; private: vtkTriQuadraticHexahedron (const vtkTriQuadraticHexahedron &) = delete; void operator = (const vtkTriQuadraticHexahedron &) = delete; }; #endif