/*========================================================================= Program: Visualization Toolkit Module: vtkTriangle.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkTriangle.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPlane.h" #include "vtkPointData.h" #include "vtkIncrementalPointLocator.h" #include "vtkPoints.h" #include "vtkPolygon.h" #include "vtkQuadric.h" #include #include vtkStandardNewMacro(vtkTriangle); //---------------------------------------------------------------------------- // Construct the triangle with three points. vtkTriangle::vtkTriangle() { this->Points->SetNumberOfPoints(3); this->PointIds->SetNumberOfIds(3); for (int i = 0; i < 3; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,0); } this->Line = vtkLine::New(); } //---------------------------------------------------------------------------- vtkTriangle::~vtkTriangle() { this->Line->Delete(); } //---------------------------------------------------------------------------- // This function simply calls the static function: // vtkTriangle::TriangleArea(double p1[3], double p2[3], double p3[3]) // with the appropriate parameters from the instantiated vtkTriangle. double vtkTriangle::ComputeArea() { double p0[3]; double p1[3]; double p2[3]; this->GetPoints()->GetPoint(0, p0); this->GetPoints()->GetPoint(1, p1); this->GetPoints()->GetPoint(2, p2); return vtkTriangle::TriangleArea(p0, p1, p2); } //---------------------------------------------------------------------------- // Create a new cell and copy this triangle's information into the cell. // Returns a poiner to the new cell created. int vtkTriangle::EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) { int i, j; double pt1[3], pt2[3], pt3[3], n[3], fabsn; double rhs[2], c1[2], c2[2]; double det; double maxComponent; int idx=0, indices[2]; double dist2Point, dist2Line1, dist2Line2; double *closest, closestPoint1[3], closestPoint2[3], cp[3]; subId = 0; pcoords[2] = 0.0; // Get normal for triangle, only the normal direction is needed, i.e. the // normal need not be normalized (unit length) // this->Points->GetPoint(1, pt1); this->Points->GetPoint(2, pt2); this->Points->GetPoint(0, pt3); vtkTriangle::ComputeNormalDirection(pt1, pt2, pt3, n); // Project point to plane // vtkPlane::GeneralizedProjectPoint(x,pt1,n,cp); // Construct matrices. Since we have over determined system, need to find // which 2 out of 3 equations to use to develop equations. (Any 2 should // work since we've projected point to plane.) // for (maxComponent=0.0, i=0; i<3; i++) { // trying to avoid an expensive call to fabs() if (n[i] < 0) { fabsn = -n[i]; } else { fabsn = n[i]; } if (fabsn > maxComponent) { maxComponent = fabsn; idx = i; } } for (j=0, i=0; i<3; i++) { if ( i != idx ) { indices[j++] = i; } } for (i=0; i<2; i++) { rhs[i] = cp[indices[i]] - pt3[indices[i]]; c1[i] = pt1[indices[i]] - pt3[indices[i]]; c2[i] = pt2[indices[i]] - pt3[indices[i]]; } if ( (det = vtkMath::Determinant2x2(c1,c2)) == 0.0 ) { pcoords[0] = pcoords[1] = 0.0; return -1; } pcoords[0] = vtkMath::Determinant2x2(rhs,c2) / det; pcoords[1] = vtkMath::Determinant2x2(c1,rhs) / det; // Okay, now find closest point to element // weights[0] = 1 - (pcoords[0] + pcoords[1]); weights[1] = pcoords[0]; weights[2] = pcoords[1]; if ( weights[0] >= 0.0 && weights[0] <= 1.0 && weights[1] >= 0.0 && weights[1] <= 1.0 && weights[2] >= 0.0 && weights[2] <= 1.0 ) { //projection distance if (closestPoint) { dist2 = vtkMath::Distance2BetweenPoints(cp,x); closestPoint[0] = cp[0]; closestPoint[1] = cp[1]; closestPoint[2] = cp[2]; } return 1; } else { double t; if (closestPoint) { if ( weights[1] < 0.0 && weights[2] < 0.0 ) { dist2Point = vtkMath::Distance2BetweenPoints(x,pt3); dist2Line1 = vtkLine::DistanceToLine(x,pt1,pt3,t,closestPoint1); dist2Line2 = vtkLine::DistanceToLine(x,pt3,pt2,t,closestPoint2); if (dist2Point < dist2Line1) { dist2 = dist2Point; closest = pt3; } else { dist2 = dist2Line1; closest = closestPoint1; } if (dist2Line2 < dist2) { dist2 = dist2Line2; closest = closestPoint2; } for (i=0; i<3; i++) { closestPoint[i] = closest[i]; } } else if ( weights[2] < 0.0 && weights[0] < 0.0 ) { dist2Point = vtkMath::Distance2BetweenPoints(x,pt1); dist2Line1 = vtkLine::DistanceToLine(x,pt1,pt3,t,closestPoint1); dist2Line2 = vtkLine::DistanceToLine(x,pt1,pt2,t,closestPoint2); if (dist2Point < dist2Line1) { dist2 = dist2Point; closest = pt1; } else { dist2 = dist2Line1; closest = closestPoint1; } if (dist2Line2 < dist2) { dist2 = dist2Line2; closest = closestPoint2; } for (i=0; i<3; i++) { closestPoint[i] = closest[i]; } } else if ( weights[1] < 0.0 && weights[0] < 0.0 ) { dist2Point = vtkMath::Distance2BetweenPoints(x,pt2); dist2Line1 = vtkLine::DistanceToLine(x,pt2,pt3,t,closestPoint1); dist2Line2 = vtkLine::DistanceToLine(x,pt1,pt2,t,closestPoint2); if (dist2Point < dist2Line1) { dist2 = dist2Point; closest = pt2; } else { dist2 = dist2Line1; closest = closestPoint1; } if (dist2Line2 < dist2) { dist2 = dist2Line2; closest = closestPoint2; } for (i=0; i<3; i++) { closestPoint[i] = closest[i]; } } else if ( weights[0] < 0.0 ) { dist2 = vtkLine::DistanceToLine(x,pt1,pt2,t,closestPoint); } else if ( weights[1] < 0.0 ) { dist2 = vtkLine::DistanceToLine(x,pt2,pt3,t,closestPoint); } else if ( weights[2] < 0.0 ) { dist2 = vtkLine::DistanceToLine(x,pt1,pt3,t,closestPoint); } } return 0; } } //---------------------------------------------------------------------------- void vtkTriangle::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { double u3; double pt0[3], pt1[3], pt2[3]; int i; this->Points->GetPoint(0, pt0); this->Points->GetPoint(1, pt1); this->Points->GetPoint(2, pt2); u3 = 1.0 - pcoords[0] - pcoords[1]; for (i=0; i<3; i++) { x[i] = pt0[i]*u3 + pt1[i]*pcoords[0] + pt2[i]*pcoords[1]; } weights[0] = u3; weights[1] = pcoords[0]; weights[2] = pcoords[1]; } //---------------------------------------------------------------------------- // Compute iso-parametric interpolation functions // void vtkTriangle::InterpolationFunctions(double pcoords[3], double sf[3]) { sf[0] = 1. - pcoords[0] - pcoords[1]; sf[1] = pcoords[0]; sf[2] = pcoords[1]; } //---------------------------------------------------------------------------- void vtkTriangle::InterpolationDerivs(double *, double derivs[6]) { //r-derivatives derivs[0] = -1; derivs[1] = 1; derivs[2] = 0; //s-derivatives derivs[3] = -1; derivs[4] = 0; derivs[5] = 1; } //---------------------------------------------------------------------------- int vtkTriangle::CellBoundary(int vtkNotUsed(subId), double pcoords[3], vtkIdList *pts) { double t1=pcoords[0]-pcoords[1]; double t2=0.5*(1.0-pcoords[0])-pcoords[1]; double t3=2.0*pcoords[0]+pcoords[1]-1.0; pts->SetNumberOfIds(2); // compare against three lines in parametric space that divide element // into three pieces if ( t1 >= 0.0 && t2 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); } else if ( t2 < 0.0 && t3 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(1)); pts->SetId(1,this->PointIds->GetId(2)); } else //( t1 < 0.0 && t3 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(2)); pts->SetId(1,this->PointIds->GetId(0)); } if ( pcoords[0] < 0.0 || pcoords[1] < 0.0 || pcoords[0] > 1.0 || pcoords[1] > 1.0 || (1.0 - pcoords[0] - pcoords[1]) < 0.0 ) { return 0; } else { return 1; } } //---------------------------------------------------------------------------- // // Marching triangles // namespace { //required so we don't violate ODR typedef int EDGE_LIST; typedef struct { EDGE_LIST edges[3]; } LINE_CASES; static LINE_CASES lineCases[] = { {{-1, -1, -1}}, {{0, 2, -1}}, {{1, 0, -1}}, {{1, 2, -1}}, {{2, 1, -1}}, {{0, 1, -1}}, {{2, 0, -1}}, {{-1, -1, -1}} }; } static int edges[3][2] = { {0,1}, {1,2}, {2,0} }; //---------------------------------------------------------------------------- int *vtkTriangle::GetEdgeArray(int edgeId) { return edges[edgeId]; } //---------------------------------------------------------------------------- void vtkTriangle::Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *vtkNotUsed(polys), vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) { static int CASE_MASK[3] = {1,2,4}; LINE_CASES *lineCase; EDGE_LIST *edge; int i, j, index, *vert; vtkIdType pts[2]; int e1, e2, newCellId; double t, x1[3], x2[3], x[3], deltaScalar; vtkIdType offset = verts->GetNumberOfCells(); // Build the case table for ( i=0, index = 0; i < 3; i++) { if (cellScalars->GetComponent(i,0) >= value) { index |= CASE_MASK[i]; } } lineCase = lineCases + index; edge = lineCase->edges; for ( ; edge[0] > -1; edge += 2 ) { for (i=0; i<2; i++) // insert line { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1],0) - cellScalars->GetComponent(vert[0],0)); if (deltaScalar > 0) { e1 = vert[0]; e2 = vert[1]; } else { e1 = vert[1]; e2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation if (deltaScalar == 0.0) { t = 0.0; } else { t = (value - cellScalars->GetComponent(e1,0)) / deltaScalar; } this->Points->GetPoint(e1, x1); this->Points->GetPoint(e2, x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { if ( outPd ) { vtkIdType p1 = this->PointIds->GetId(e1); vtkIdType p2 = this->PointIds->GetId(e2); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate line if ( pts[0] != pts[1] ) { newCellId = offset + lines->InsertNextCell(2,pts); if (outCd) { outCd->CopyData(inCd, cellId, newCellId); } } } } //---------------------------------------------------------------------------- // Get the edge specified by edgeId (range 0 to 2) and return that edge's // coordinates. vtkCell *vtkTriangle::GetEdge(int edgeId) { int edgeIdPlus1 = (edgeId > 1 ? 0 : (edgeId+1) ); // load point id's this->Line->PointIds->SetId(0,this->PointIds->GetId(edgeId)); this->Line->PointIds->SetId(1,this->PointIds->GetId(edgeIdPlus1)); // load coordinates this->Line->Points->SetPoint(0,this->Points->GetPoint(edgeId)); this->Line->Points->SetPoint(1,this->Points->GetPoint(edgeIdPlus1)); return this->Line; } //---------------------------------------------------------------------------- // Plane intersection plus in/out test on triangle. The in/out test is // performed using tol as the tolerance. int vtkTriangle::IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { double pt1[3], pt2[3], pt3[3], n[3]; double tol2 = tol*tol; double closestPoint[3]; double dist2, weights[3]; subId = 0; pcoords[2] = 0.0; // Get normal for triangle // this->Points->GetPoint(1, pt1); this->Points->GetPoint(2, pt2); this->Points->GetPoint(0, pt3); vtkTriangle::ComputeNormal (pt1, pt2, pt3, n); if (n[0] != 0 || n[1] != 0 || n[2] != 0) { // Intersect plane of triangle with line // if ( ! vtkPlane::IntersectWithLine(p1,p2,n,pt1,t,x) ) { pcoords[0] = pcoords[1] = 0.0; return 0; } // Evaluate position // int inside; if ( (inside = this->EvaluatePosition(x, closestPoint, subId, pcoords, dist2, weights)) >= 0) { if ( dist2 <= tol2 ) { return 1; } return inside; } } // Normals are null, so the triangle is degenerated and // we still need to check intersection between line and // the longest edge. double dist2Pt1Pt2 = vtkMath::Distance2BetweenPoints(pt1, pt2); double dist2Pt2Pt3 = vtkMath::Distance2BetweenPoints(pt2, pt3); double dist2Pt3Pt1 = vtkMath::Distance2BetweenPoints(pt3, pt1); if (dist2Pt1Pt2 > dist2Pt2Pt3 && dist2Pt1Pt2 > dist2Pt3Pt1) { this->Line->Points->InsertPoint(0,pt1); this->Line->Points->InsertPoint(1,pt2); } else if (dist2Pt2Pt3 > dist2Pt3Pt1 && dist2Pt2Pt3 > dist2Pt1Pt2) { this->Line->Points->InsertPoint(0,pt2); this->Line->Points->InsertPoint(1,pt3); } else { this->Line->Points->InsertPoint(0,pt3); this->Line->Points->InsertPoint(1,pt1); } if (this->Line->IntersectWithLine(p1,p2,tol,t,x,pcoords,subId)) { // Compute r and s manually, using dot and norm. double pt3Pt1[3]; double pt3Pt2[3]; double pt3X[3]; for (int i = 0; i < 3; i++) { pt3Pt1[i] = pt1[i] - pt3[i]; pt3Pt2[i] = pt2[i] - pt3[i]; pt3X[i] = x[i] - pt3[i]; } pcoords[0] = vtkMath::Dot(pt3X, pt3Pt1) / dist2Pt3Pt1; pcoords[1] = vtkMath::Dot(pt3X, pt3Pt2) / dist2Pt2Pt3; return 1; } pcoords[0] = pcoords[1] = 0.0; return 0; } //---------------------------------------------------------------------------- int vtkTriangle::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts) { pts->Reset(); ptIds->Reset(); for ( int i=0; i < 3; i++ ) { ptIds->InsertId(i,this->PointIds->GetId(i)); pts->InsertPoint(i,this->Points->GetPoint(i)); } return 1; } //---------------------------------------------------------------------------- // Used a staged computation: first compute derivatives in local x'-y' // coordinate system; then convert into x-y-z modelling system. void vtkTriangle::Derivatives(int vtkNotUsed(subId), double vtkNotUsed(pcoords)[3], double *values, int dim, double *derivs) { double v0[2], v1[2], v2[2], v[3], v10[3], v20[3], lenX; double x0[3], x1[3], x2[3], n[3]; double *J[2], J0[2], J1[2]; double *JI[2], JI0[2], JI1[2]; double functionDerivs[6], sum[2], dBydx, dBydy; int i, j; // Project points of triangle into 2D system this->Points->GetPoint(0, x0); this->Points->GetPoint(1, x1); this->Points->GetPoint(2, x2); vtkTriangle::ComputeNormal (x0, x1, x2, n); for (i=0; i < 3; i++) { v10[i] = x1[i] - x0[i]; v[i] = x2[i] - x0[i]; } vtkMath::Cross(n,v10,v20); //creates local y' axis if ( (lenX=vtkMath::Normalize(v10)) <= 0.0 || vtkMath::Normalize(v20) <= 0.0 ) //degenerate { for ( j=0; j < dim; j++ ) { for ( i=0; i < 3; i++ ) { derivs[j*dim + i] = 0.0; } } return; } v0[0] = v0[1] = 0.0; //convert points to 2D (i.e., local system) v1[0] = lenX; v1[1] = 0.0; v2[0] = vtkMath::Dot(v,v10); v2[1] = vtkMath::Dot(v,v20); // Compute interpolation function derivatives vtkTriangle::InterpolationDerivs(nullptr,functionDerivs); // Compute Jacobian: Jacobian is constant for a triangle. J[0] = J0; J[1] = J1; JI[0] = JI0; JI[1] = JI1; J[0][0] = v1[0] - v0[0]; J[1][0] = v2[0] - v0[0]; J[0][1] = v1[1] - v0[1]; J[1][1] = v2[1] - v0[1]; // Compute inverse Jacobian vtkMath::InvertMatrix(J,JI,2); // Loop over "dim" derivative values. For each set of values, compute // derivatives in local system and then transform into modelling system. // First compute derivatives in local x'-y' coordinate system for ( j=0; j < dim; j++ ) { sum[0] = sum[1] = 0.0; for ( i=0; i < 3; i++) //loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim*i + j]; sum[1] += functionDerivs[3 + i] * values[dim*i + j]; } dBydx = sum[0]*JI[0][0] + sum[1]*JI[0][1]; dBydy = sum[0]*JI[1][0] + sum[1]*JI[1][1]; // Transform into global system (dot product with global axes) derivs[3*j] = dBydx * v10[0] + dBydy * v20[0]; derivs[3*j + 1] = dBydx * v10[1] + dBydy * v20[1]; derivs[3*j + 2] = dBydx * v10[2] + dBydy * v20[2]; } } //---------------------------------------------------------------------------- // Compute the triangle normal from a points list, and a list of point ids // that index into the points list. void vtkTriangle::ComputeNormal(vtkPoints *p, int vtkNotUsed(numPts), vtkIdType *pts, double n[3]) { double v1[3], v2[3], v3[3]; p->GetPoint(pts[0],v1); p->GetPoint(pts[1],v2); p->GetPoint(pts[2],v3); vtkTriangle::ComputeNormal(v1,v2,v3,n); } //---------------------------------------------------------------------------- // Compute the circumcenter (center[3]) and radius squared (method // return value) of a triangle defined by the three points x1, x2, and // x3. (Note that the coordinates are 2D. 3D points can be used but // the z-component will be ignored.) double vtkTriangle::Circumcircle(double x1[2], double x2[2], double x3[2], double center[2]) { double n12[2], n13[2], x12[2], x13[2]; double *A[2], rhs[2], sum, diff; int i; // calculate normals and intersection points of bisecting planes. // for (i=0; i<2; i++) { n12[i] = x2[i] - x1[i]; n13[i] = x3[i] - x1[i]; x12[i] = (x2[i] + x1[i])/2.0; x13[i] = (x3[i] + x1[i])/2.0; } // Compute solutions to the intersection of two bisecting lines // (2-eqns. in 2-unknowns). // // form system matrices // A[0] = n12; A[1] = n13; rhs[0] = vtkMath::Dot2D(n12,x12); rhs[1] = vtkMath::Dot2D(n13,x13); // Solve system of equations // if ( vtkMath::SolveLinearSystem(A,rhs,2) == 0 ) { center[0] = center[1] = 0.0; return VTK_DOUBLE_MAX; } else { center[0] = rhs[0]; center[1] = rhs[1]; } //determine average value of radius squared for (sum=0, i=0; i<2; i++) { diff = x1[i] - center[i]; sum += diff*diff; diff = x2[i] - center[i]; sum += diff*diff; diff = x3[i] - center[i]; sum += diff*diff; } if ( (sum /= 3.0) > VTK_DOUBLE_MAX ) { return VTK_DOUBLE_MAX; } else { return sum; } } //---------------------------------------------------------------------------- // Given a 2D point x[2], determine the barycentric coordinates of the point. // Barycentric coordinates are a natural coordinate system for simplices that // express a position as a linear combination of the vertices. For a // triangle, there are three barycentric coordinates (because there are // fourthree vertices), and the sum of the coordinates must equal 1. If a // point x is inside a simplex, then all three coordinates will be strictly // positive. If two coordinates are zero (so the third =1), then the // point x is on a vertex. If one coordinates are zero, the point x is on an // edge. In this method, you must specify the vertex coordinates x1->x3. // Returns 0 if triangle is degenerate. int vtkTriangle::BarycentricCoords(double x[2], double x1[2], double x2[2], double x3[2], double bcoords[3]) { double *A[3], p[3], a1[3], a2[3], a3[3]; int i; // Homogenize the variables; load into arrays. // a1[0] = x1[0]; a1[1] = x2[0]; a1[2] = x3[0]; a2[0] = x1[1]; a2[1] = x2[1]; a2[2] = x3[1]; a3[0] = 1.0; a3[1] = 1.0; a3[2] = 1.0; p[0] = x[0]; p[1] = x[1]; p[2] = 1.0; // Now solve system of equations for barycentric coordinates // A[0] = a1; A[1] = a2; A[2] = a3; if ( vtkMath::SolveLinearSystem(A,p,3) ) { for (i=0; i<3; i++) { bcoords[i] = p[i]; } return 1; } else { return 0; } } //---------------------------------------------------------------------------- // Project triangle defined in 3D to 2D coordinates. Returns 0 if degenerate // triangle; non-zero value otherwise. Input points are x1->x3; output 2D // points are v1->v3. int vtkTriangle::ProjectTo2D(double x1[3], double x2[3], double x3[3], double v1[2], double v2[2], double v3[2]) { double n[3], v21[3], v31[3], v[3], xLen; // Get normal for triangle vtkTriangle::ComputeNormal (x1, x2, x3, n); for (int i=0; i < 3; i++) { v21[i] = x2[i] - x1[i]; v31[i] = x3[i] - x1[i]; } if ( (xLen=vtkMath::Normalize(v21)) <= 0.0 ) { return 0; } // The first point is at (0,0); the next at (xLen,0); compute the other // point relative to the first two. v1[0] = v1[1] = 0.0; v2[0] = xLen; v2[1] = 0.0; vtkMath::Cross(n,v21,v); v3[0] = vtkMath::Dot(v31,v21); v3[1] = vtkMath::Dot(v31,v); return 1; } //---------------------------------------------------------------------------- // Support triangle clipping. Note that the table defines triangles (three ids // at a time define a triangle, -1 ends the list). Numbers in the list >= 100 // correspond to already existing vertices; otherwise the numbers refer to edge // ids. namespace { //required so we don't violate ODR typedef int TRIANGLE_EDGE_LIST; typedef struct { TRIANGLE_EDGE_LIST edges[7]; } TRIANGLE_CASES; static TRIANGLE_CASES triangleCases[] = { {{-1, -1, -1, -1, -1, -1, -1}}, // 0 {{0, 2, 100, -1, -1, -1, -1}}, // 1 {{1, 0, 101, -1, -1, -1, -1}}, // 2 {{1, 2, 100, 1, 100, 101, -1}}, // 3 {{2, 1, 102, -1, -1, -1, -1}}, // 4 {{0, 1, 102, 102, 100, 0, -1}}, // 5 {{0, 101, 2, 2, 101, 102, -1}}, // 6 {{100, 101, 102, -1, -1, -1, -1}} // 7 }; } //---------------------------------------------------------------------------- // Clip this triangle using scalar value provided. Like contouring, except // that it cuts the triangle to produce other triangles. void vtkTriangle::Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tris, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) { static int CASE_MASK[3] = {1,2,4}; TRIANGLE_CASES *triangleCase; TRIANGLE_EDGE_LIST *edge; int i, j, index, *vert; int e1, e2, newCellId; vtkIdType pts[3]; int vertexId; double t, x1[3], x2[3], x[3], deltaScalar; // Build the case table if ( insideOut ) { for ( i=0, index = 0; i < 3; i++) { if (cellScalars->GetComponent(i,0) <= value) { index |= CASE_MASK[i]; } } } else { for ( i=0, index = 0; i < 3; i++) { if (cellScalars->GetComponent(i,0) > value) { index |= CASE_MASK[i]; } } } // Select the case based on the index and get the list of edges for this case triangleCase = triangleCases + index; edge = triangleCase->edges; // generate each triangle for ( ; edge[0] > -1; edge += 3 ) { for (i=0; i<3; i++) // insert triangle { // vertex exists, and need not be interpolated if (edge[i] >= 100) { vertexId = edge[i] - 100; this->Points->GetPoint(vertexId, x); if ( locator->InsertUniquePoint(x, pts[i]) ) { outPd->CopyData(inPd,this->PointIds->GetId(vertexId),pts[i]); } } else //new vertex, interpolate { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1],0) - cellScalars->GetComponent(vert[0],0)); if (deltaScalar > 0) { e1 = vert[0]; e2 = vert[1]; } else { e1 = vert[1]; e2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation if (deltaScalar == 0.0) { t = 0.0; } else { t = (value - cellScalars->GetComponent(e1,0)) / deltaScalar; } this->Points->GetPoint(e1, x1); this->Points->GetPoint(e2, x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { vtkIdType p1 = this->PointIds->GetId(e1); vtkIdType p2 = this->PointIds->GetId(e2); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate tri's if (pts[0] == pts[1] || pts[0] == pts[2] || pts[1] == pts[2]) { continue; } newCellId = tris->InsertNextCell(3,pts); outCd->CopyData(inCd,cellId,newCellId); } } //---------------------------------------------------------------------------- namespace { double Determinant(double a[3], double b[3], double c[3], double d[3]) { // If > 0, d lies above the plane defined by (a,b,c) // if < 0, d lies below the plane defined by (a,b,c) // if = 0, d lies in the plane defined by (a,b,c) return vtkMath::Determinant3x3( a[0]-d[0], a[1]-d[1], a[2]-d[2], b[0]-d[0], b[1]-d[1], b[2]-d[2], c[0]-d[0], c[1]-d[1], c[2]-d[2] ); } static const double eps = 256*std::numeric_limits::epsilon(); // The orientation values are chosen so that any combination of 3 will produce // a unique value. enum OrientationState { Colinear = 1, // binary 1 Clockwise = 2, // binary 10 Counterclockwise = 4, // binary 100 }; int Orientation(const double p1[2], const double p2[2], const double p3[2]) { // Return 4 if the path connecting p1,p2,p3 is counterclockwise. // Return 2 if the path connecting p1,p2,p3 is clockwise. // Return 1 if the points are colinear. double v1[2] = { p2[0]-p1[0], p2[1]-p1[1] }; double v2[2] = { p3[0]-p1[0], p3[1]-p1[1] }; double signedArea = v1[0]*v2[1] - v1[1]*v2[0]; if ( std::abs( signedArea ) < eps ) { return Colinear; } return ( signedArea > 0. ? Counterclockwise : Clockwise ); } int CoplanarTrianglesIntersect(double p1[2], double q1[2], double r1[2], double p2[2], double q2[2], double r2[2]) { // Determine whether or not triangle T1 = (p1,q1,r1) intersects triangle // T2 = (p2,q2,r2), assumming that they are coplanar. This method is adapted // from Olivier Devillers, Philippe Guigue. Faster Triangle-Triangle // Intersection Tests. RR-4488, IN-RIA. 2002. // First, we swap vertices if necessary so that T1 and T2 are oriented // counterclockwise. if ( Orientation( p1, q1, r1 ) == Clockwise ) { std::swap(q1,r1); } if ( Orientation( p2, q2, r2 ) == Clockwise ) { std::swap(q2,r2); } // Next, we compute the orientation of p1 w.r.t. the edges that comprise T2 int p1Orientation[3] = { Orientation( p2, q2, p1 ), Orientation( q2, r2, p1 ), Orientation( r2, p2, p1 ) }; // Three conditions for positive intersection: // 1. If all three orientations are counterclockwise, then p1 lies within T2. // 2. If two orientations are colinear, then p1 lies on a vertex of T2. // 3. If one orientation is colinear and the other two are counterclockwise, // then p1 lies on an edge of T2. int sumOfSigns = p1Orientation[0] + p1Orientation[1] + p1Orientation[2]; static const int Three_CounterClockwise = 3*Counterclockwise; static const int Two_Colinear_One_Clockwise = 2*Colinear + Clockwise; static const int Two_Colinear_One_Counterclockwise = (2*Colinear + Counterclockwise); static const int One_Colinear_Two_Counterclockwise = (Colinear + 2*Counterclockwise); if (sumOfSigns == Three_CounterClockwise || // condition 1 sumOfSigns == Two_Colinear_One_Clockwise || // condition 2 sumOfSigns == Two_Colinear_One_Counterclockwise || // condition 2 sumOfSigns == One_Colinear_Two_Counterclockwise ) // condition 3 { return 1; } // If we have reached this point, then either // 1. Two orientations are counterclockwise and one is clockwise, or // 2. Two orientations are clockwise and one is counterclockwise. // Equivalently, from "Faster Triangle-Triangle Intersection Tests": // 1. p1 belongs to region R1 // 2. p1 belongs to region R2 // We permute T2 so that we have the following orienatation pattern: // (counterclockwise, either orientation, clockwise). // This orientation corresponds to p1 lying in either region R1 or R2 int index; for (index = 0; index < 3; index++) { if (p1Orientation[index] == Counterclockwise && p1Orientation[(index+2)%3] == Clockwise) { break; } } if (index == 3) { return 0; } double* T2[3] = {p2,q2,r2}; p2 = T2[index]; q2 = T2[(index+1)%3]; r2 = T2[(index+2)%3]; // First decision tree (p1 belongs to region R1) if (p1Orientation[(index+1)%3] == Counterclockwise) { if (Orientation( r2, p2, q1 ) != Clockwise) // Test I { if (Orientation( r2, p1, q1 ) != Clockwise) // Test II.a { if (Orientation( p1, p2, q1 ) != Clockwise) // Test III.a { return 1; } else { if (Orientation( p1, p2, r1 ) != Clockwise) // Test IV.a { if (Orientation( q1, r1, p2 ) != Clockwise) // Test V { return 1; } else { return 0; } } else { return 0; } } } else { return 0; } } else { if (Orientation( r2, p2, r1 ) != Clockwise) // Test II.b { if (Orientation( q1, r1, r2 ) == Clockwise) // Test III.b { return 0; } else { // The diagram in the paper has an error. Check the text for the // correct test. if (Orientation( p1, p2, r1 ) == Clockwise) // Test IV.b { return 0; } else { return 1; } } } else { return 0; } } } // Second decision tree (p1 belongs to region R2) else { if (Orientation( r2, p2, q1 ) != Clockwise) // Test I { if (Orientation( q2, r2, q1 ) != Clockwise) // Test II.a { if (Orientation( p1, p2, q1 ) != Clockwise) // Test III.a { if (Orientation( p1, q2, q1 ) == Counterclockwise) // Test IV.a { return 0; } else { return 1; } } else { if (Orientation( p1, p2, r1 ) == Clockwise) // Test IV.b { return 0; } else { // The paper has an error here. if (Orientation( p1, p2, r1 ) == Clockwise) // Test V.a { return 0; } else { return 1; } } } } else { // the paper has an error here: q1 is in Region R25 when (p1,q2,q1) is // clockwise. if (Orientation( p1, q2, q1 ) != Counterclockwise) // Test III.b { if (Orientation( q2, r2, r1 ) == Clockwise) // Test IV.c { return 0; } else { if (Orientation( q1, r1, q2 ) == Clockwise) // Test V.b { return 0; } else { return 1; } } } else { return 0; } } } else { if (Orientation( r2, p2, r1 ) == Clockwise) // Test II.b { return 0; } else { if (Orientation( q1, r1, r2 ) != Clockwise) // Test III.c { if (Orientation( r1, p1, p2 ) == Clockwise) // Test IV.d { return 0; } else { return 1; } } else { if (Orientation( q1, r1, q2 ) == Clockwise) // Test IV.e { return 0; } else { if (Orientation( q2, r2, r1 ) == Clockwise) // Test V.c { return 0; } else { return 1; } } } } } } } } // Determine whether or not triangle (p1,q1,r1) intersects triangle (p2,q2,r2). // This method is adapted from Olivier Devillers, Philippe Guigue. Faster // Triangle-Triangle Intersection Tests. RR-4488, IN-RIA. 2002. int vtkTriangle::TrianglesIntersect(double p1[3], double q1[3], double r1[3], double p2[3], double q2[3], double r2[3]) { // Triangle T1 = (p1,q1,r1) and lies in plane Pi1 // Triangle T2 = (p2,q2,r2) and lies in plane Pi2 // First, we determine whether T1 intersects Pi2 double det1[3] = { Determinant( p2, q2, r2, p1 ), Determinant( p2, q2, r2, q1 ), Determinant( p2, q2, r2, r1 ) }; if ( std::abs( det1[0] ) < eps && std::abs( det1[1] ) < eps && std::abs( det1[2] ) < eps) { // The triangles are coplanar. We pick the Cartesian principal plane that // maximizes their projected area and perform the query in 2-D. double v1[3], v2[3]; for (int i=0;i<3;i++) { v1[i] = q1[i] - p1[i]; v2[i] = r1[i] - p1[i]; } double normal[3]; vtkMath::Cross( v1, v2, normal ); int index = 0; for (int i=1;i<3;i++) { if (std::abs( normal[index] ) > std::abs( normal[i] )) { index = i; } } if (index == 0) { return CoplanarTrianglesIntersect(&p1[1], &q1[1], &r1[1], &p2[1], &q2[1], &r2[1]); } if (index == 1) { double p1_[2] = { p1[0], p1[2] }; double q1_[2] = { q1[0], q1[2] }; double r1_[2] = { r1[0], r1[2] }; double p2_[2] = { p2[0], p2[2] }; double q2_[2] = { q2[0], q2[2] }; double r2_[2] = { r2[0], r2[2] }; return CoplanarTrianglesIntersect(p1_, q1_, r1_, p2_, q2_, r2_); } else { return CoplanarTrianglesIntersect(p1, q1, r1, p2, q2, r2); } } bool degenerate = false; double* points[3] = {p1,q1,r1}; for (int i=0;i<3;i++) { if (std::abs( det1[i] ) < eps) { degenerate = true; if (vtkTriangle::PointInTriangle(points[i], p2,q2,r2, eps)) { return 1; } } } if (degenerate) { return 0; } // Do the three vertices of T1 lie in the same half-space defined by Pi2? { int sumOfSigns = ( det1[0] > 0. ) + ( det1[1] > 0. ) + ( det1[2] > 0. ); if (sumOfSigns == 0 || sumOfSigns == 3) { // Yes. return 0; } } // Next, we determine whether T2 intersects Pi1 double det2[3] = { Determinant( p1, q1, r1, p2 ), Determinant( p1, q1, r1, q2 ), Determinant( p1, q1, r1, r2 ) }; // Do the three vertices of T2 lie in the same half-space defined by Pi1? { int sumOfSigns = ( det2[0] > 0. ) + ( det2[1] > 0. ) + ( det2[2] > 0. ); if (sumOfSigns == 0 || sumOfSigns == 3) { // Yes. return 0; } } // We know that one point in T1 lies on one side of Pi2 and the other two // points lie on the other side (sim. for T2 and Pi1). We permute our vertices // so p1 is alone in its half-space, and q1, r1 are in the other halfspace // (sim. for p2, q2, r2). Additionally, we swap q2 and r2 (sim. for q1 and r1) // if necessary so that p1 lies in the positive half-space of Pi2 (sim for p2 // and Pi1). int index1; for (index1 = 0; index1 < 3; index1++) { int sumOfSigns = ( det1[(index1+1)%3] > 0. ) + ( det1[(index1+2)%3] > 0. ); if (sumOfSigns != 1) { break; } } assert(index1 >= 0 && index1 < 3); double* T1[3] = {p1,q1,r1}; p1 = T1[index1]; q1 = T1[(index1+1)%3]; r1 = T1[(index1+2)%3]; bool swap1 = (det1[index1] < -eps); int index2; for (index2 = 0; index2 < 3; index2++) { int sumOfSigns = ( det2[(index2+1)%3] > 0. ) + ( det2[(index2+2)%3] > 0. ); if (sumOfSigns != 1) { break; } } assert(index2 >= 0 && index2 < 3); double* T2[3] = {p2,q2,r2}; p2 = T2[index2]; q2 = T2[(index2+1)%3]; r2 = T2[(index2+2)%3]; bool swap2 = (det2[index2] < -eps); if (swap1) { std::swap(q2,r2); } if (swap2) { std::swap(q1,r1); } // The final step is to determine whether or not the line segments formed by // the intersection of T1 and Pi2 and the intersection of T2 and Pi1 overlap. // This is done by checking the following predicate: // Determinant(p1,q1,p2,q2) <= 0. ^ Determinant(p1,r1,r2,p2) <= 0. if ((Determinant( p1, q1, p2, q2 ) <= 0.) && (Determinant( p1, r1, r2, p2 ) <= 0.)) { return 1; } return 0; } //---------------------------------------------------------------------------- // Given a point x, determine whether it is inside (within the // tolerance squared, tol2) the triangle defined by the three // coordinate values p1, p2, p3. Method is via comparing dot products. // (Note: in current implementation the tolerance only works in the // neighborhood of the three vertices of the triangle. int vtkTriangle::PointInTriangle(double x[3], double p1[3], double p2[3], double p3[3], double tol2) { double x1[3], x2[3], x3[3], v13[3], v21[3], v32[3]; double n1[3], n2[3], n3[3]; int i; // Compute appropriate vectors // for (i=0; i<3; i++) { x1[i] = x[i] - p1[i]; x2[i] = x[i] - p2[i]; x3[i] = x[i] - p3[i]; v13[i] = p1[i] - p3[i]; v21[i] = p2[i] - p1[i]; v32[i] = p3[i] - p2[i]; } // See whether intersection point is within tolerance of a vertex. // if ( (x1[0]*x1[0] + x1[1]*x1[1] + x1[2]*x1[2]) <= tol2 || (x2[0]*x2[0] + x2[1]*x2[1] + x2[2]*x2[2]) <= tol2 || (x3[0]*x3[0] + x3[1]*x3[1] + x3[2]*x3[2]) <= tol2 ) { return 1; } // If not near a vertex, check whether point is inside of triangular face. // // Obtain normal off of triangular face // vtkMath::Cross (x1, v13, n1); vtkMath::Cross (x2, v21, n2); vtkMath::Cross (x3, v32, n3); // Check whether ALL the three normals go in same direction // if ( (vtkMath::Dot(n1,n2) >= 0.0) && (vtkMath::Dot(n2,n3) >= 0.0) && (vtkMath::Dot(n1,n3) >= 0.0) ) { return 1; } else { return 0; } } //---------------------------------------------------------------------------- double vtkTriangle::GetParametricDistance(double pcoords[3]) { int i; double pDist, pDistMax=0.0; double pc[3]; pc[0] = pcoords[0]; pc[1] = pcoords[1]; pc[2] = 1.0 - pcoords[0] - pcoords[1]; for (i=0; i<3; i++) { if ( pc[i] < 0.0 ) { pDist = -pc[i]; } else if ( pc[i] > 1.0 ) { pDist = pc[i] - 1.0; } else //inside the cell in the parametric direction { pDist = 0.0; } if ( pDist > pDistMax ) { pDistMax = pDist; } } return pDistMax; } //---------------------------------------------------------------------------- void vtkTriangle::ComputeQuadric(double x1[3], double x2[3], double x3[3], double quadric[4][4]) { double crossX1X2[3], crossX2X3[3], crossX3X1[3]; double determinantABC; double ABCx[3][3]; double n[4]; int i, j; for (i = 0; i < 3; i++) { ABCx[0][i] = x1[i]; ABCx[1][i] = x2[i]; ABCx[2][i] = x3[i]; } vtkMath::Cross(x1, x2, crossX1X2); vtkMath::Cross(x2, x3, crossX2X3); vtkMath::Cross(x3, x1, crossX3X1); determinantABC = vtkMath::Determinant3x3(ABCx); n[0] = crossX1X2[0] + crossX2X3[0] + crossX3X1[0]; n[1] = crossX1X2[1] + crossX2X3[1] + crossX3X1[1]; n[2] = crossX1X2[2] + crossX2X3[2] + crossX3X1[2]; n[3] = -determinantABC; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { quadric[i][j] = n[i] * n[j]; } } } //---------------------------------------------------------------------------- void vtkTriangle::ComputeQuadric(double x1[3], double x2[3], double x3[3], vtkQuadric *quadric) { double quadricMatrix[4][4]; ComputeQuadric(x1, x2, x3, quadricMatrix); quadric->SetCoefficients(quadricMatrix[0][0], quadricMatrix[1][1], quadricMatrix[2][2], 2*quadricMatrix[0][1], 2*quadricMatrix[1][2], 2*quadricMatrix[0][2], 2*quadricMatrix[0][3], 2*quadricMatrix[1][3], 2*quadricMatrix[2][3], quadricMatrix[3][3]); } //---------------------------------------------------------------------------- static double vtkTriangleCellPCoords[9] = {0.0,0.0,0.0, 1.0,0.0,0.0, 0.0,1.0,0.0}; double *vtkTriangle::GetParametricCoords() { return vtkTriangleCellPCoords; } //---------------------------------------------------------------------------- void vtkTriangle::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Line:\n"; this->Line->PrintSelf(os,indent.GetNextIndent()); }