/*========================================================================= Program: Visualization Toolkit Module: vtkBilinearQuadIntersection.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // created by Shaun David Ramsey and Kristin Potter copyright (c) 2003 // email ramsey()cs.utah.edu with any questions /*========================================================================= This copyright notice is available at: http://www.opensource.org/licenses/mit-license.php Copyright (c) 2003 Shaun David Ramsey, Kristin Potter, Charles Hansen Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sel copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =========================================================================*/ #include "vtkBilinearQuadIntersection.h" #include "vtkMath.h" #define RAY_EPSILON 1e-12 // some small epsilon for flt pt namespace { double GetBestDenominator( double v, double M1, double M2, double J1, double J2, double K1, double K2, double R1, double R2) { double denom = (v * (M1 - M2) + J1 - J2); double d2 = (v * M1 + J1); if (fabs(denom) > fabs(d2)) // which denominator is bigger { return (v * (K2 - K1) + R2 - R1) / denom; } return -(v * K1 + R1) / d2; } double ComputeIntersectionFactor( const vtkVector3d& dir, const vtkVector3d& orig, const vtkVector3d& srfpos) { // if x is bigger than y and z if (fabs(dir.GetX()) >= fabs(dir.GetY()) && fabs(dir.GetX()) >= fabs(dir.GetZ())) { return (srfpos.GetX() - orig.GetX()) / dir.GetX(); } // if y is bigger than x and z else if (fabs(dir.GetY()) >= fabs(dir.GetZ())) // && fabs(dir.GetY()) >= fabs(dir.GetX())) { return (srfpos.GetY() - orig.GetY()) / dir.GetY(); } // otherwise x isn't bigger than both and y isn't bigger than both else // if(fabs(dir.GetZ()) >= fabs(dir.GetX()) && fabs(dir.GetZ()) >= fabs(dir.GetY())) { return (srfpos.GetZ() - orig.GetZ()) / dir.GetZ(); } } } //------------------------------------------------------------------------------ vtkBilinearQuadIntersection::vtkBilinearQuadIntersection(const vtkVector3d& pt00, const vtkVector3d& pt01, const vtkVector3d& pt10, const vtkVector3d& pt11) : Point00(pt00.GetData()) , Point01(pt01.GetData()) , Point10(pt10.GetData()) , Point11(pt11.GetData()) { } //------------------------------------------------------------------------------ double* vtkBilinearQuadIntersection::GetP00Data() { return this->Point00.GetData(); } //------------------------------------------------------------------------------ double* vtkBilinearQuadIntersection::GetP01Data() { return this->Point01.GetData(); } //------------------------------------------------------------------------------ double* vtkBilinearQuadIntersection::GetP10Data() { return this->Point10.GetData(); } //------------------------------------------------------------------------------ double* vtkBilinearQuadIntersection::GetP11Data() { return this->Point11.GetData(); } //------------------------------------------------------------------------------ vtkVector3d vtkBilinearQuadIntersection::ComputeCartesianCoordinates(double u, double v) { vtkVector3d respt; respt.SetX(((1.0 - u) * (1.0 - v) * this->Point00.GetX() + (1.0 - u) * v * this->Point01.GetX() + u * (1.0 - v) * this->Point10.GetX() + u * v * this->Point11.GetX())); respt.SetY(((1.0 - u) * (1.0 - v) * this->Point00.GetY() + (1.0 - u) * v * this->Point01.GetY() + u * (1.0 - v) * this->Point10.GetY() + u * v * this->Point11.GetY())); respt.SetZ(((1.0 - u) * (1.0 - v) * this->Point00.GetZ() + (1.0 - u) * v * this->Point01.GetZ() + u * (1.0 - v) * this->Point10.GetZ() + u * v * this->Point11.GetZ())); int nbOfSwap = this->AxesSwapping; while (nbOfSwap != 0) { double tmp = respt.GetZ(); respt.SetZ(respt.GetY()); respt.SetY(respt.GetX()); respt.SetX(tmp); nbOfSwap--; } return respt; } //------------------------------------------------------------------------------ bool vtkBilinearQuadIntersection::RayIntersection( const vtkVector3d& r, const vtkVector3d& q, vtkVector3d& uv) { //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Equation of the ray intersection: // P(u, v) = (1-u)(1-v)this->Point00.+ (1-u)vthis->Point01.+ // u(1-v)this->Point10.+ uvthis->Point11 // Equation of the ray: // R(t) = r + tq //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vtkVector3d pos1, pos2; // vtkVector3d pos = ro + t * rd; int num_sol; // number of solutions to the quadratic double vsol[2]; // the two roots from quadraticroot double t2, u; // the t values of the two roots //~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Variables for substitition // a = this->Point11.- this->Point10.- this->Point01.+ this->Point00 // b = this->Point10.- this->Point00 // c = this->Point01.- this->Point00 // d = this->Point00. (d is shown below in the #ifdef ray area) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Retrieve the xyz of the q part of ray double qx = q.GetX(); double qy = q.GetY(); double qz = q.GetZ(); double rx = r.GetX(); double ry = r.GetY(); double rz = r.GetZ(); this->AxesSwapping = 0; while (qz == 0.0 && this->AxesSwapping < 3) { this->AxesSwapping++; double tmp; tmp = qx; qx = qy; qy = qz; qz = tmp; tmp = rx; rx = ry; ry = rz; rz = tmp; tmp = this->Point00.GetX(); this->Point00.SetX(this->Point00.GetY()); this->Point00.SetY(this->Point00.GetZ()); this->Point00.SetZ(tmp); tmp = this->Point01.GetX(); this->Point01.SetX(this->Point01.GetY()); this->Point01.SetY(this->Point01.GetZ()); this->Point01.SetZ(tmp); tmp = this->Point10.GetX(); this->Point10.SetX(this->Point10.GetY()); this->Point10.SetY(this->Point10.GetZ()); this->Point10.SetZ(tmp); tmp = this->Point11.GetX(); this->Point11.SetX(this->Point11.GetY()); this->Point11.SetY(this->Point11.GetZ()); this->Point11.SetZ(tmp); } // Find a w.r.t. x, y, z double ax = this->Point11.GetX() - this->Point10.GetX() - this->Point01.GetX() + this->Point00.GetX(); double ay = this->Point11.GetY() - this->Point10.GetY() - this->Point01.GetY() + this->Point00.GetY(); double az = this->Point11.GetZ() - this->Point10.GetZ() - this->Point01.GetZ() + this->Point00.GetZ(); // Find b w.r.t. x, y, z double bx = this->Point10.GetX() - this->Point00.GetX(); double by = this->Point10.GetY() - this->Point00.GetY(); double bz = this->Point10.GetZ() - this->Point00.GetZ(); // Find c w.r.t. x, y, z double cx = this->Point01.GetX() - this->Point00.GetX(); double cy = this->Point01.GetY() - this->Point00.GetY(); double cz = this->Point01.GetZ() - this->Point00.GetZ(); // Find d w.r.t. x, y, z - subtracting r just after double dx = this->Point00.GetX() - rx; double dy = this->Point00.GetY() - ry; double dz = this->Point00.GetZ() - rz; // Find A1 and A2 double A1 = ax * qz - az * qx; double A2 = ay * qz - az * qy; // Find B1 and B2 double B1 = bx * qz - bz * qx; double B2 = by * qz - bz * qy; // Find C1 and C2 double C1 = cx * qz - cz * qx; double C2 = cy * qz - cz * qy; // Find D1 and D2 double D1 = dx * qz - dz * qx; double D2 = dy * qz - dz * qy; double A = A2 * C1 - A1 * C2; double B = A2 * D1 - A1 * D2 + B2 * C1 - B1 * C2; double C = B2 * D1 - B1 * D2; uv.SetX(-2); uv.SetY(-2); uv.SetZ(-2); num_sol = vtkMath::QuadraticRoot(A, B, C, -RAY_EPSILON, 1 + RAY_EPSILON, vsol); switch (num_sol) { case 0: return false; // no solutions found case 1: uv.SetY(vsol[0]); uv.SetX(::GetBestDenominator(uv.GetY(), A2, A1, B2, B1, C2, C1, D2, D1)); pos1 = this->ComputeCartesianCoordinates(uv.GetX(), uv.GetY()); uv.SetZ(::ComputeIntersectionFactor(q, r, pos1)); return (uv.GetX() < 1 + RAY_EPSILON && uv.GetX() > -RAY_EPSILON && uv.GetZ() > 0); case 2: // two solutions found uv.SetY(vsol[0]); uv.SetX(::GetBestDenominator(uv.GetY(), A2, A1, B2, B1, C2, C1, D2, D1)); pos1 = this->ComputeCartesianCoordinates(uv.GetX(), uv.GetY()); uv.SetZ(::ComputeIntersectionFactor(q, r, pos1)); if (uv.GetX() < 1 + RAY_EPSILON && uv.GetX() > -RAY_EPSILON && uv.GetZ() > 0) { u = ::GetBestDenominator(vsol[1], A2, A1, B2, B1, C2, C1, D2, D1); if (u < 1 + RAY_EPSILON && u > RAY_EPSILON) { pos2 = this->ComputeCartesianCoordinates(u, vsol[1]); t2 = ::ComputeIntersectionFactor(q, r, pos2); if (t2 < 0 || uv.GetZ() < t2) // t2 is bad or t1 is better { return true; } // other wise both t2 > 0 and t2 < t1 uv.SetY(vsol[1]); uv.SetX(u); uv.SetZ(t2); return true; } return true; // u2 is bad but u1 vars are still okay } else // doesn't fit in the root - try other one { uv.SetY(vsol[1]); uv.SetX(::GetBestDenominator(vsol[1], A2, A1, B2, B1, C2, C1, D2, D1)); pos1 = this->ComputeCartesianCoordinates(uv.GetX(), uv.GetY()); uv.SetZ(::ComputeIntersectionFactor(q, r, pos1)); return (uv.GetX() < 1 + RAY_EPSILON && uv.GetX() > -RAY_EPSILON && uv.GetZ() > 0); } default: return false; } }