/*========================================================================= Program: Visualization Toolkit Module: vtkParametricBohemianDome.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkParametricBohemianDome.h" #include "vtkObjectFactory.h" #include "vtkMath.h" vtkStandardNewMacro(vtkParametricBohemianDome); //----------------------------------------------------------------------------// vtkParametricBohemianDome::vtkParametricBohemianDome() : A(0.5) , B(1.5) , C(1.0) { // Preset triangulation parameters this->MinimumU = -vtkMath::Pi(); this->MaximumU = vtkMath::Pi(); this->MinimumV = -vtkMath::Pi(); this->MaximumV = vtkMath::Pi(); this->JoinU = 1; this->JoinV = 1; this->TwistU = 0; this->TwistV = 1; this->ClockwiseOrdering = 0; this->DerivativesAvailable = 1; } //----------------------------------------------------------------------------// vtkParametricBohemianDome::~vtkParametricBohemianDome() { } //----------------------------------------------------------------------------// void vtkParametricBohemianDome::Evaluate(double uvw[3], double Pt[3], double Duvw[9]) { // Copy the parameters out of the vector, for the sake of convenience. double u = uvw[0]; double v = uvw[1]; // We're only going to need the u and v partial derivatives. // The w partial derivatives are not needed. double *Du = Duvw; double *Dv = Duvw + 3; // Instead of a bunch of calls to the trig library, // just call it once and store the results. double cosu = cos(u); double sinu = sin(u); double cosv = cos(v); double sinv = sin(v); // Location of the point. This parametrization was taken from: // http://mathworld.wolfram.com/BohemianDome.html Pt[0] = this->A * cosu; Pt[1] = this->A * sinu + this->B * cosv; Pt[2] = this->C * sinv; // The derivative with respect to u: Du[0] = -this->A * sinu; Du[1] = this->A * cosu; Du[2] = 0.; // The derivative with respect to v: Dv[0] = 0.; Dv[1] = -this->B * sinv; Dv[2] = this->C * cosv; } //----------------------------------------------------------------------------// double vtkParametricBohemianDome::EvaluateScalar(double *, double *, double *) { return 0; } //----------------------------------------------------------------------------// void vtkParametricBohemianDome::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); }