/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginCommandLineArgs // INPUTS: {brainweb1e1a10f20.mha} // INPUTS: {brainweb1e1a10f20Rot10Tx15.mha} // ARGUMENTS: ImageRegistration20Output.mhd // Software Guide : EndCommandLineArgs // Software Guide : BeginLatex // // This example illustrates the use of the \doxygen{AffineTransform} // for performing registration in $3D$. // // \index{itk::AffineTransform} // // Software Guide : EndLatex #include "itkImageRegistrationMethod.h" #include "itkMeanSquaresImageToImageMetric.h" #include "itkRegularStepGradientDescentOptimizer.h" #include "itkCenteredTransformInitializer.h" // Software Guide : BeginLatex // // Let's start by including the header file of the AffineTransform. // // \index{itk::AffineTransform!header} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet #include "itkAffineTransform.h" // Software Guide : EndCodeSnippet #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" #include "itkSubtractImageFilter.h" #include "itkRescaleIntensityImageFilter.h" // // The following piece of code implements an observer // that will monitor the evolution of the registration process. // #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: using OptimizerType = itk::RegularStepGradientDescentOptimizer; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!itk::IterationEvent().CheckEvent(&event)) { return; } std::cout << optimizer->GetCurrentIteration() << " "; std::cout << optimizer->GetValue() << " "; std::cout << optimizer->GetCurrentPosition() << std::endl; } }; int main(int argc, char * argv[]) { if (argc < 4) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile " << std::endl; std::cerr << " outputImagefile [differenceBeforeRegistration] " << std::endl; std::cerr << " [differenceAfterRegistration] " << std::endl; std::cerr << " [stepLength] [maxNumberOfIterations] " << std::endl; return EXIT_FAILURE; } // Software Guide : BeginLatex // // We define then the types of the images to be registered. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet constexpr unsigned int Dimension = 3; using PixelType = float; using FixedImageType = itk::Image; using MovingImageType = itk::Image; // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The transform type is instantiated using the code below. The template // parameters of this class are the representation type of the space // coordinates and the space dimension. // // \index{itk::AffineTransform!Instantiation} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using TransformType = itk::AffineTransform; // Software Guide : EndCodeSnippet using OptimizerType = itk::RegularStepGradientDescentOptimizer; using MetricType = itk::MeanSquaresImageToImageMetric; using InterpolatorType = itk::LinearInterpolateImageFunction; using RegistrationType = itk::ImageRegistrationMethod; auto metric = MetricType::New(); auto optimizer = OptimizerType::New(); auto interpolator = InterpolatorType::New(); auto registration = RegistrationType::New(); registration->SetMetric(metric); registration->SetOptimizer(optimizer); registration->SetInterpolator(interpolator); // Software Guide : BeginLatex // // The transform object is constructed below and passed to the registration // method. // // \index{itk::AffineTransform!New()} // \index{itk::AffineTransform!Pointer} // \index{itk::RegistrationMethod!SetTransform()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet auto transform = TransformType::New(); registration->SetTransform(transform); // Software Guide : EndCodeSnippet using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; auto fixedImageReader = FixedImageReaderType::New(); auto movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); registration->SetFixedImage(fixedImageReader->GetOutput()); registration->SetMovingImage(movingImageReader->GetOutput()); fixedImageReader->Update(); registration->SetFixedImageRegion( fixedImageReader->GetOutput()->GetBufferedRegion()); // Software Guide : BeginLatex // // In this example, we again use the // \doxygen{CenteredTransformInitializer} helper class in order to compute // a reasonable value for the initial center of rotation and the // translation. The initializer is set to use the center of mass of each // image as the initial correspondence correction. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using TransformInitializerType = itk::CenteredTransformInitializer; auto initializer = TransformInitializerType::New(); initializer->SetTransform(transform); initializer->SetFixedImage(fixedImageReader->GetOutput()); initializer->SetMovingImage(movingImageReader->GetOutput()); initializer->MomentsOn(); initializer->InitializeTransform(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Now we pass the parameters of the current transform as the initial // parameters to be used when the registration process starts. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet registration->SetInitialTransformParameters(transform->GetParameters()); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Keeping in mind that the scale of units in scaling, rotation and // translation are quite different, we take advantage of the scaling // functionality provided by the optimizers. We know that the first $N // \times N$ elements of the parameters array correspond to the rotation // matrix factor, and the last $N$ are the components of the translation to // be applied after multiplication with the matrix is performed. // // Software Guide : EndLatex double translationScale = 1.0 / 1000.0; if (argc > 8) { translationScale = std::stod(argv[8]); } // Software Guide : BeginCodeSnippet using OptimizerScalesType = OptimizerType::ScalesType; OptimizerScalesType optimizerScales(transform->GetNumberOfParameters()); optimizerScales[0] = 1.0; optimizerScales[1] = 1.0; optimizerScales[2] = 1.0; optimizerScales[3] = 1.0; optimizerScales[4] = 1.0; optimizerScales[5] = 1.0; optimizerScales[6] = 1.0; optimizerScales[7] = 1.0; optimizerScales[8] = 1.0; optimizerScales[9] = translationScale; optimizerScales[10] = translationScale; optimizerScales[11] = translationScale; optimizer->SetScales(optimizerScales); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // We also set the usual parameters of the optimization method. In this // case we are using an // \doxygen{RegularStepGradientDescentOptimizer}. Below, we define the // optimization parameters like initial step length, minimal step length // and number of iterations. These last two act as stopping criteria for // the optimization. // // Software Guide : EndLatex double steplength = 0.1; if (argc > 6) { steplength = std::stod(argv[6]); } unsigned int maxNumberOfIterations = 300; if (argc > 7) { maxNumberOfIterations = std::stoi(argv[7]); } // Software Guide : BeginCodeSnippet optimizer->SetMaximumStepLength(steplength); optimizer->SetMinimumStepLength(0.0001); optimizer->SetNumberOfIterations(maxNumberOfIterations); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // We also set the optimizer to do minimization by calling the // \code{MinimizeOn()} method. // // \index{itk::Regular\-Step\-Gradient\-Descent\-Optimizer!MinimizeOn()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet optimizer->MinimizeOn(); // Software Guide : EndCodeSnippet // Create the Command observer and register it with the optimizer. // auto observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); // Software Guide : BeginLatex // // Finally we trigger the execution of the registration method by calling // the \code{Update()} method. The call is placed in a \code{try/catch} // block in case any exceptions are thrown. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet try { registration->Update(); std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Once the optimization converges, we recover the parameters from the // registration method. This is done with the // \code{GetLastTransformParameters()} method. We can also recover the // final value of the metric with the \code{GetValue()} method and the // final number of iterations with the \code{GetCurrentIteration()} // method. // // \index{itk::RegistrationMethod!GetValue()} // \index{itk::RegistrationMethod!GetCurrentIteration()} // \index{itk::RegistrationMethod!GetLastTransformParameters()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet OptimizerType::ParametersType finalParameters = registration->GetLastTransformParameters(); const unsigned int numberOfIterations = optimizer->GetCurrentIteration(); const double bestValue = optimizer->GetValue(); // Software Guide : EndCodeSnippet // Print out results // std::cout << "Result = " << std::endl; std::cout << " Iterations = " << numberOfIterations << std::endl; std::cout << " Metric value = " << bestValue << std::endl; // The following code is used to dump output images to files. // They illustrate the final results of the registration. // We will resample the moving image and write out the difference image // before and after registration. We will also rescale the intensities of // the difference images, so that they look better! using ResampleFilterType = itk::ResampleImageFilter; auto finalTransform = TransformType::New(); finalTransform->SetParameters(finalParameters); finalTransform->SetFixedParameters(transform->GetFixedParameters()); auto resampler = ResampleFilterType::New(); resampler->SetTransform(finalTransform); resampler->SetInput(movingImageReader->GetOutput()); FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); resampler->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resampler->SetOutputOrigin(fixedImage->GetOrigin()); resampler->SetOutputSpacing(fixedImage->GetSpacing()); resampler->SetOutputDirection(fixedImage->GetDirection()); resampler->SetDefaultPixelValue(100); using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using CastFilterType = itk::CastImageFilter; using WriterType = itk::ImageFileWriter; auto writer = WriterType::New(); auto caster = CastFilterType::New(); writer->SetFileName(argv[3]); caster->SetInput(resampler->GetOutput()); writer->SetInput(caster->GetOutput()); writer->Update(); using DifferenceFilterType = itk::SubtractImageFilter; auto difference = DifferenceFilterType::New(); difference->SetInput1(fixedImageReader->GetOutput()); difference->SetInput2(resampler->GetOutput()); auto writer2 = WriterType::New(); using RescalerType = itk::RescaleIntensityImageFilter; auto intensityRescaler = RescalerType::New(); intensityRescaler->SetInput(difference->GetOutput()); intensityRescaler->SetOutputMinimum(0); intensityRescaler->SetOutputMaximum(255); writer2->SetInput(intensityRescaler->GetOutput()); resampler->SetDefaultPixelValue(1); // Compute the difference image between the // fixed and resampled moving image. if (argc > 5) { writer2->SetFileName(argv[5]); writer2->Update(); } using IdentityTransformType = itk::IdentityTransform; auto identity = IdentityTransformType::New(); // Compute the difference image between the // fixed and moving image before registration. if (argc > 4) { resampler->SetTransform(identity); writer2->SetFileName(argv[4]); writer2->Update(); } return EXIT_SUCCESS; }