/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkCovarianceImageFunction_hxx #define itkCovarianceImageFunction_hxx #include "itkMatrix.h" #include "itkConstNeighborhoodIterator.h" namespace itk { template CovarianceImageFunction::CovarianceImageFunction() = default; template auto CovarianceImageFunction::EvaluateAtIndex(const IndexType & index) const -> RealType { using PixelType = typename TInputImage::PixelType; using PixelComponentType = typename PixelType::ValueType; using PixelComponentRealType = typename NumericTraits::RealType; if (!this->GetInputImage()) { itkExceptionMacro("No image connected to CovarianceImageFunction"); } const unsigned int VectorDimension = this->GetInputImage()->GetNumberOfComponentsPerPixel(); RealType covariance(VectorDimension, VectorDimension); if (!this->IsInsideBuffer(index)) { covariance.fill(NumericTraits::max()); return covariance; } covariance.fill(PixelComponentRealType{}); using MeanVectorType = vnl_vector; MeanVectorType mean(VectorDimension); mean.fill(PixelComponentRealType{}); // Create an N-d neighborhood kernel, using a zeroflux boundary condition typename InputImageType::SizeType kernelSize; kernelSize.Fill(m_NeighborhoodRadius); ConstNeighborhoodIterator it( kernelSize, this->GetInputImage(), this->GetInputImage()->GetBufferedRegion()); // Set the iterator at the desired location it.SetLocation(index); // Walk the neighborhood const unsigned int size = it.Size(); for (unsigned int i = 0; i < size; ++i) { const PixelType pixel = it.GetPixel(i); for (unsigned int dimx = 0; dimx < VectorDimension; ++dimx) { mean[dimx] += pixel[dimx]; for (unsigned int dimy = 0; dimy < VectorDimension; ++dimy) { covariance[dimx][dimy] += static_cast(pixel[dimx]) * static_cast(pixel[dimy]); } } } const auto rsize = static_cast(size); mean /= rsize; for (unsigned int dimx = 0; dimx < VectorDimension; ++dimx) { for (unsigned int dimy = 0; dimy < VectorDimension; ++dimy) { covariance[dimx][dimy] /= rsize; covariance[dimx][dimy] -= mean[dimx] * mean[dimy]; } } return (covariance); } template void CovarianceImageFunction::PrintSelf(std::ostream & os, Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << "NeighborhoodRadius: " << m_NeighborhoodRadius << std::endl; } } // end namespace itk #endif