/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkGaussianDerivativeSpatialFunction_hxx #define itkGaussianDerivativeSpatialFunction_hxx #include #include "itkMath.h" namespace itk { template auto GaussianDerivativeSpatialFunction::Evaluate(const TInput & position) const -> OutputType { // Normalizing the Gaussian is important for statistical applications // but is generally not desirable for creating images because of the // very small numbers involved (would need to use doubles) double prefixDenom; if (m_Normalized) { prefixDenom = m_Sigma[m_Direction] * m_Sigma[m_Direction]; for (unsigned int i = 0; i < VImageDimension; ++i) { prefixDenom *= m_Sigma[i]; } prefixDenom *= 2 * std::pow(2 * itk::Math::pi, VImageDimension / 2.0); } else { prefixDenom = 1.0; } double suffixExp = 0; for (unsigned int i = 0; i < VImageDimension; ++i) { suffixExp += (position[m_Direction] - m_Mean[m_Direction]) * (position[m_Direction] - m_Mean[m_Direction]) / (2 * m_Sigma[m_Direction] * m_Sigma[m_Direction]); } double value = -2 * (position[m_Direction] - m_Mean[m_Direction]) * m_Scale * (1 / prefixDenom) * std::exp(-1 * suffixExp); return static_cast(value); } /** Evaluate the function at a given position and return a vector */ template auto GaussianDerivativeSpatialFunction::EvaluateVector(const TInput & position) const -> VectorType { VectorType gradient; for (unsigned int i = 0; i < VImageDimension; ++i) { m_Direction = i; gradient[i] = this->Evaluate(position); } return gradient; } template void GaussianDerivativeSpatialFunction::PrintSelf(std::ostream & os, Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << "Sigma: " << m_Sigma << std::endl; os << indent << "Mean: " << m_Mean << std::endl; os << indent << "Scale: " << m_Scale << std::endl; os << indent << "Normalized: " << (m_Normalized ? "On" : "Off") << std::endl; os << indent << "Direction: " << m_Direction << std::endl; } } // end namespace itk #endif